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Abstract

This is a series of problems developed for use in the new Classical Mechanics I and II courses
at Lakehead University. The development of the courses involved a major content overhaul as
the Lagrangian and Hamiltonian formalism took the drivers seat (the previous renditions focused
on a force based approach to classical physics.) These problems were written so students could
develop experience with numerical methods (in particular, experience with Mathematica) and get
a feeling for how quickly problems can become non-analytic.

This is the “problems only” version of the project, people wishing to use any of the problems
for their own coursework or study are free to do so. For my own interest I would love to be
contacted to know what they’re being used for. Emails containing complaints and errors are also
encouraged.
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1 Year 2: Coupled Oscillators

This question will give an introduction to Mathematica and its commands, and thus be fairly guided,
but this guidance will leave in subsequent problems. Mathematica is a bit unlike other programming
languages in that its default workspace, the “notebook,” is quite like a notebook and not like a regular
programming interface. It does read your code top to bottom and compile its Mathematica-syntax into
operations for the computer, by pressing Shift+Enter while your text-cursor/carriage is in that block.
However, it is very much like a notebook in that you can compile the code you write in small blocks
(as marked on the right-hand side of the screen), and edit and change parts separate from one another,
much like the entries in a notebook. Mathematica programs are a lot less like files you may compile in
Java or C++ and distribute, and a lot more like a page of calculations or workspace.

Lots of very complex commands, not in other programming languages by default, can be guessed
in Mathematica, but this is unnecessary. Often if you have something in mind in Mathematica you
do not need to guess: all of the functions with examples, options, and errors, can be found on the
official Wolfram webpage at http://reference.wolfram.com/language/, as well as built into the program
itself under [Help] and then [Find Selected Function]. The best way to learn Mathematica is to try
programming in it, and feel around for these commands. Also, generic internet searches for how to do
things will often turn up official Mathematica-help pages or useful references on-line. For example, if
you are asked to model a curvy set of data points with a function in Mathematica you will need to use
a regression method, so just search something like “nonlinear regression in Mathematica” one finds one
of the top results is NonelinearModelFit[ ], which gives use instructions and more.

Learning Goals:

• Practice writing Lagrangians

• Very basic introduction to Mathematica

• Look at applications of harmonic oscillators, damped and undamped, to physics and their normal
modes

One of the simplest, and most important, problems in particle physics is the harmonic oscillator;
it is jokingly said that the universe is a giant spring mattress in the continuum limit. The harmonic
oscillator also demonstrates many of the mathematical techniques that we will need throughout the
course and serves as a good introduction to various aspects of programming.

a. Consider a line of four point masses of mass m, connected by springs of spring constant k between
adjacent masses, with the endpoints connected to fixed “walls” by springs with spring constant
k. Show that the Lagrangian of this system is

L =
m

2

(
ẋ2

1 + ẋ2
2 + ẋ2

3 + ẋ2
4

)
− k

2

(
x2

1 + (x1 − x2)2 + (x2 − x3)2 + (x3 − x4)2 + x2
4

)
(1.1)

and thus using the natural time τ = ω0t, where ω0 =
√
k/m, that we may write the equations

of motion as below, where a dot now means a derivative with respect to τ , and I is the identity
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matrix.

0 = Iẍ +


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

x (1.2)

More generally, the equation of motion of the N particle analog is

0 = Iẍ +Kx (1.3)

where I and K are N ×N matrices. Normal modes correspond to solutions where all oscillators
have the same fixed frequency ω, x(τ) = x0e

iωτ . Substituting this ansatz into our formula we get
(K − ω2I)x = 0, which has non-trivial solutions for the ω2 such that det(K − ω2I) = 0.

b. Use Mathematica to program the matrix K − ω2I for an N -particle system for arbitrary N .
You may want to use the functions IdentityMatrix[ ] for I, Table[ ], and KroneckerDelta[ ] for
defining K. To solve for ω2 you may need the functions Det[ ], and Solve[ ] or NSolve[ ]. Use
Mathematica to determine

i. All the ω2 (with their multiplicities) when N = 9 to at least 5 decimal places or in perfect
form.

ii. The highest value of ω2 when N = 51 to at least 5 decimal places. You may want to increase
precision on NSolve[ ].

iii. Show if A is an arbitrary symmetric matrix, A = AT , and x and w are eigenvectors of A
corresponding to different eigenvalues, then x and w are orthogonal. So that our normal
modes truly are normal (orthogonal).

We conclude that any solution may be written as:

x(τ) =
N∑
i=1

(ai cos(ωiτ) + bi sin(ωiτ)) vi (1.4)

where vi is from the nullspace of K − ω2
i I, i.e. an eigenvector corresponding to ωi. Since our

matrices are symmetric we conclude that all the vi are orthogonal (unit) vectors. These vi are
the normal modes.

c. Consider the N = 4 particle system.

i. What are the 4 normal modes and their corresponding frequencies of oscillation? You may
want to use the command NullSpace[ ]. Be sure to normalize your vectors, perhaps with
the command Normalize[ ].

ii. Plot the solutions to the equation of motion for τ ∈ [0, 20], using the Plot[ ] command, given
the initial conditions

x(0) = w ẋ(0) = 0 (1.5)

where w is the normal mode corresponding to the highest frequency. Your solution should
be 1 plot with 4 trajectories on it showing the characteristic vibrational pattern for that
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mode. You may assume all of the springs are two units of length long at equilibrium so that
when you plot the xi(τ) on the same graph you can prevent the solutions from overlapping,
i.e. send xi(τ)→ xi(τ) + 2i or something of that nature, to view it in the “global coordinate
system” for the problem as opposed to 4 local equilibrium coordinates.

d. Consider the extension of (1.3) to a general damped system

0 = M ẍ +Bẋ +Kx (1.6)

where M , B and K are symmetric. This is an equation you may find in an AC RLC-circuit.

i. Use an ansatz for a set of oscillators at the same frequency z(τ ;ω) = z0ωe
ωτ on (1.6), ω ∈ C

and z(ω; τ) ∈ CN . Conclude that we will have non-trivial solutions for the frequency/vector
pair (ω, z(τ ;ω)) only if det(−ω2M + ωB + K) = 0. Furthermore, show if (ω, z(τ ;ω)) is a
solution then so is (ω∗, z(τ ;ω)∗).

We now have 2N modes which come in N natural pairs. Unfortunately, they’re all complex,
and we know that our physical system should only involve real numbers. However, we can
turn these 2N complex modes into 2N real modes using our natural pairings.

ii. Suppose we have the solution (ω, z) where z = z0e
ωτ . Show if we expand ω and z0 into

completely real components, ω = α + iβ and z0 = x0 + iy0, that our 2N modes can be
written

z = eατ [(x0 cos(βτ)− y0 sin(βτ)) + i(x0 sin(βτ) + y0 cos(βτ))] (1.7)

iii. Since z and z∗ are solutions, by linearity, so are arbitrary linear combinations. Conclude
that we can turn our 2N complex modes into 2N real modes via the linear combinations:
(z + z∗)/2 and (z− z∗)/(2i), and write them down.

Note our modes with constant frequency are now no-longer normal.

e. Consider the N = 2 system, which may occur in the study of circuits, specified by

M =

(
8 1
1 9

)
B =

(
3 0
0 6

)
M =

(
4 0
0 5

)
(1.8)

i. What are the damping factors and frequencies of oscillation (α, β)?

ii. Include a plot of a characteristic vibrational patterns as before. What happens as τ →∞?
What happens as B → The Zero Matrix? What happens if we replace B by cB and c→∞?

f. Consider the extension of (1.6) to a general forced system with damping

F = M ẍ +Bẋ +Kx (1.9)

i. Assume F is harmonic, F(t) = F0e
iωτ , then proceed as before for the ansatz z(τ, ω) =

z0(ω)eiωτ , where ω ∈ R. Show that

z(τ, ω) = [(X cos(ωτ)− Y sin(ωτ)) + i(X sin(ωτ) + Y cos(ωτ))] F0 (1.10)

where X and Y are the real and complex parts respectively of (K + iωB − ω2M)−1.
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ii. Assume F (t) = F0 sin(ωτ), so that x(τ, ω) = Im(z). The total energy of the system is

E(τ, ω) =
1

2

(
xTMx

)
+

1

2

(
xTKx

)
(1.11)

Plug in the result of part i. and average E(τ, ω) over one period to get

〈E(ω)〉 =
1

4
ω2FT

0 (XMX + YMY )F0 +
1

4
FT

0 (XKX + Y KY )F0 (1.12)

g. One place you may see a model like (1.9) is in a classical model of a crystal, where particles are
modeled as point masses on springs. Suppose the crystal consists of N = 5 atoms and is being
forced according to

F(t) =


1
0
0
0
0

 sin(ωτ) (1.13)

as in part f. Use M and K as in part a for the N = 5 particle system. Plot 〈E(ω)〉 for ω ∈ (0, 3),
and mark the fundamental frequencies on your plot.

i. Assume B is the zero matrix (it is undamped).

ii. Assume B is

B =
1

40


9 1 0 0 0
1 9 7 0 0
0 7 3 5 0
0 0 5 2 0
0 0 0 0 1

 (1.14)

To do this, you will need to make the matrix (K + iωB − ω2M), and take its inverse and split
them into the appropriate X and Y . Then use the average energy formula derived. To multiply
two matrices in Mathematica becareful not to write XY or X ∗ Y but X.Y with a period inbetween
the two matrices/vectors.
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2 Year 2: Kapitza’s Pendulum

Learning Goals:

• Practice writing Lagrangians and bringing them to dimensionless form suitable for computer use

• Recognize that even extremely simple systems have non-analytic solutions and can quickly run
into chaotic behaviour.

• Practice series expansions and approximation techniques

• Gain experience using Mathematica and its basic functions, and reading the included Mathemat-
ica documentation. Functions include Expand[ ], D[ ], \.→, NDSolve[ ], Plot[ ], Manipulate[ ],
and ParametricPlot[ ].

Most realistic and interesting problems involve non-linear oscillations or behaviour. Consider the
following elementary superposition of linear oscillators and how it creates a dramatic non-linear system.

A mass m is on a rigid rod of length L in a standard-orientation gravitational field of strength g
and connected to a pivot, forming a pendulum. The pivot is free to move vertically according to some
motion Y (t). Let the angle between the downward vertical (measured counter-clockwise) be denoted
by θ.

a. Write the Lagrangian for this system. Show that the resulting equation of motion is

θ̈(t) +

(
ω2

0 +
1

L
Ÿ (t)

)
sin(θ(t)) = 0 (2.1)

where ω0 =
√
g/L. You may do this by hand or use Mathematica to perform the expansions

with Expand[ ] and derivatives with D[ ].

b. Suppose the driving motion is Y (t) = A sin(ωt). To make inputs suitable for a computer, use
the following dimensionless substitutions: τ = ω0t, R = A/L, and Ω = ω/ω0 and show that (2.1)
transforms to

d2θ

dτ 2
+
(
1−RΩ2 sin(Ωτ)

)
sin(θ(τ)) = 0. (2.2)

You may do this by hand or use Mathematica to perform the substitutions using the replacement
function.

A traditional pendulum (Y (τ) = 0) has two equilibrium points, at θ = 0 and θ = π, the one at 0
is stable and at π is unstable. We see our modified pendulum also has equilibrium points at 0 and
π. In either case, the equation of motion (2.2) is not solvable analytically. If the mass is above
the vertical, π/2 ≤ θ ≤ 3π/2, we would expect it to immediately fall. However, if we imagine we
start the mass close to π, and oscillate the pivot quickly (Ω � 1) and a short distance (R � 1)
that the rod and oscillations will repeatedly “throw” the falling mass back up.

c. Use Mathematica’s NDSolve[ ] (Numerical Differential Equation Solver) and Plot[ ] functions to
plot the solutions to (2.2) for the following (in each case, use θ′(τ) = 0) for at least two periods:

i. R = 0.1, Ω = 20, θ(0) = 0.2.
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ii. R = 0.1, Ω = 10, θ(0) = π − 0.2. Describe in one sentence what is happening to θ(t).

iii. R = 0.01, Ω = 20, θ(0) = π − 0.2. Include lines at y = π/2 and y = 3π/2. Compare to ii.

it may be beneficial for your understanding of the problem to try your own initial conditions and
dimensionless parameters. Include a sketch or a copy of the image with your assignment.

In the case of non-runaway behaviour, θ can be viewed as two separate components, θg describing
the gradual oscillations about π, and θf describing the fast small oscillations about the θg position.

d. Using θ = θg + θf and |θf | � 1, expand sin(θ) in (2.2) about θg and separate the equation of
motion into the two coupled ODEs

θ̈g + sin θg −RΩ2θf cos θg sin(Ωτ) = 0 (2.3)

θ̈f + θf cos θg −RΩ2 sin θg sin(Ωτ) = 0 (2.4)

where dots now mean derivatives with respect to dimensionless time, τ . From our plots we know
that θf ∝ sin(Ωτ), show that

θf ' [−R sin θg] sin(Ωτ) (2.5)

We say that the gradual motion of θg about π is caused by an “effective potential,” Veff (θg), so
that in the same sense that acceleration is (proportional to) the gradient of a potential, θ̈g =
−dVeff/dθg.

e. Using (2.5) and (2.3) find Veff (θg). Replace any instance of sin2(Ωτ) with its average value
before calculating Veff (θg). Try out the Integrate[ ] function for both the definite and indefinite
integrals.

f. What are the conditions on the dimensionless parameters Ω and R for θ = π to be stable? Plot
Veff (θg) for cases where π is stable and unstable. What is the maximum possible angle that
θ ' θg can be deflected from π?

g. Show in dimensionless coordinates that the canonical momentum of the oscillator is

p ∝ θ̇ +RΩ sin θ cos(Ωτ) (2.6)

Use ParametricPlot[ ] and draw at least 4 phase space curves. Make sure at least one has π
unstable and one has π stable. Comment on the differences.

h. Show that the Hamiltonian is

H(τ) ∝ θ̇2 −R2Ω2 cos2(Ωτ)− 2 cos(θ) + 2R sin(Ωτ) (2.7)

and plot it for some (non-trivial) initial parameters. Is it constant? Is this expected from the
physical setup of the system?

i. Suppose the pendulum is being driven by a horizontal motion instead, X(t) = A sin(ωt), repeat
part b with the same constants to get the dimensionless equation of motion

d2θ

dτ 2
+ sin θ − Ω2R cos θ sin(Ωτ) = 0 (2.8)
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j. Using R = 0.1 and Ω = 20 plot the solution to the new equation of motion. Use Manipulate[ ]
to vary the initial position θ(0) and search for unusual stable equilibria in θ ∈ [0, π], record any
that you find. Assume θ̇(0) = 0.

k. Repeat part d, expanding sin(θ) and cos(θ) using θ = θg + θf and |θf | � 1 and separate the ODE
into two equations and solve for θf as before.

l. Proceed as instructed in parts e and f. Find Veff (θg) and plot it for the distinct cases, compute
the exact stable equilibria.
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3 Year 2: Spontaneous Symmetry Breaking

Learning Goals:

• Bringing Lagrangians to dimensionless form

• Spontaneous symmetry breaking

• Small oscillations and linearization

• Phase space analysis

Consider a hoop of radius R rotating around the z-axis at constant speed ω with two masses of
mass m on opposite sides of the hoop and connected by a spring with spring constant k and equilibrium
distance 2r0, all under the influence of a gravitational field of strength g.

a. Write a Lagrangian for the system described. Using the substitutions ω0 =
√

2k/m, Z = z/R,
R0 = r0/R, Ω = ω/ω0, τ = ω0t, and G = g/Rω2

0, show that the Lagrangian can be brought to
the dimensionless form:

L̃ =
1

1− Z2

(
dZ

dτ

)2

+ Ω2(1− Z2)− 2GZ −
(
R0 −

√
1− Z2

)2

(3.1)

Recall any Lagrangians are equivalent if they are the same up to a constant or multiple.

b. Define Veff (Z) = −Ω2(1− Z2) + 2GZ +
(
R0 −

√
1− Z2

)2
and superimpose plots of Veff (Z) for

the following initial conditions (try using the Show[ ] function):

i. G = 0, R0 = 0.4, Ω = 0.600.

ii. G = 0, R0 = 0.4, Ω = 0.774.

iii. G = 0, R0 = 0.4, Ω = 1.000.

It may be profitable to see the effect when G changes. Find the equilibrium points and classify
their stability when the gravitational field strength isG = 0, analytically. Solve for the equilibrium
points numerically when G = 0.1, Ω = 0.4, and R0 = 0.4 and state their stability.

c. Find the equation of motion from L̃. By linearizing the equations of motion find the frequency
of small oscillations at the stable equilibrium points when G = 0. Hint: Use the equation of
motion and Mathematica’s replacement functions to replace Z with Z0 + εδZ and so on, then use
Mathematica to expand the equation of motion in a series in ε.

d. Plot the frequency of small oscillations about the stable equilibria as a function of Ω, for R = 0.7
and G = 0.

When G = 0 and Ω is increased so that the equilibrium points change the system undergoes
“spontaneous symmetry breaking.” In condensed matter theory ferromagnets undergo sponta-
neous symmetry breaking below the Curie temperature (in no magnetic field).
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The application of a non-zero magnetic field has the same effect as the application of a non-zero
G field in our problem, and leads to “explicit symmetry breaking.”

In the Standard Model when energies are below the Higgs vacuum expectation value (246GeV), or
space is cooler than 1015K, spontaneous symmetry breaking occurs as the electroweak symmetries
of the Standard Model Lagrangian break into the weak and electromagnetic interactions. This
gives some particles some of their mass, but most importantly gives mass to the W and Z bosons.
You may be unsurprised by now if you look for an image of the Higgs potential.

e. Solve the equation of motion you derived in c. for G = 0, R0 = 0.5, and the following initial
conditions, and explain what’s happening briefly. It may be helpful to plot the broken-symmetry
equilibrium points.

i. Z(0) = 0.7, Z ′(0) = 0, Ω = 0.6

ii. Z(0) = 0.8275, Z ′(0) = 0, Ω = 0.6. Comment on the speed of the particle near Z = 0.

iii. Z(0) = 0.8275, Z ′(0) = 0, Ω = 0.8.

f. Compute both the generalized momentum and the Hamiltonian from the Lagrangian derived in
part c. For the initial conditions: G = 0.03, R = 0.5, Ω = 0.6, tmax = 20π, Z(0) = 0.7, and
Z ′(0) = 0 compute the Hamiltonian over time, is it (effectively) constant? Justify.

g. Plot the p(t) versus Z(t) phase space curves (superimposed) for the following initial conditions:
R0 = 0.5, Ω = 0.6, Z ′(0) = 0 and:

i. G = 0, Ω = 0.6, Z(0) = 0.3, 0.5, 0.82, 0.827, 0.86, 0.9.

ii. G = 0.01, Ω = 0.6, Z(0) = 0.3, 0.5, 0.82, 0.827, 0.86, 0.9.

ii. G = 0, Ω = 1/
√

2, Z(0) = 0.3, 0.5, 0.7, 0.8, 0.9.

Use the ParametricPlot[ ] funct ion and set AspectRatio→ 1 to make it easy to read.
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4 Year 2: Restricted 3 Body Problem

Learning Goals:

• Bringing Lagrangians to dimensionless form

• Approximation techniques

• Managing many equations/variables in programming (6 coupled ODEs)

• Understanding heliocentric/geocentric/CoM coordinate systems, the behaviour of binary stars,
and the restricted 3-body problem, as well as long term stability

• Investigating islands of stability

The gravitational two-body problem, involving two masses who interact only through gravity, is
easily solvable given the masses, initial positions, and velocities of two objects. The solutions seem
physically intuitive as one experiences similar effects frequently, and typically we learn about the orbits
of planets in grade school. The solutions are also geometrically rich from a purely mathematical view
since they are all conic-sections.

On the other hand, the gravitational three-body problem is an analytic disaster; each case must
be solved independently and numerically even when simplifying assumptions are made. The problem
has been studied in various forms by every renaissance mathematician and physicist, and still leads to
publications today. The three-body problem is generalizable to the more realistic scenario of n-bodies,
but with the difficulty the three-body problem poses (even for modern computers) it is clear that the
n-body problems that occur in modeling galaxies are not solved the way we will proceed.

a. Write the Lagrangian for three masses m1, m2, m3 which interact only via gravitational attraction,
then show that the 3 equations of motion are

~̈r1 +G

(
m2

‖~r1 − ~r2‖3
(~r1 − ~r2) +

m3

‖~r1 − ~r3‖3
(~r1 − ~r3)

)
= 0 (4.1)

~̈r2 +G

(
m3

‖~r2 − ~r3‖3
(~r2 − ~r3) +

m1

‖~r2 − ~r1‖3
(~r2 − ~r1)

)
= 0 (4.2)

~̈r3 +G

(
m1

‖~r3 − ~r1‖3
(~r3 − ~r1) +

m2

‖~r3 − ~r2‖3
(~r3 − ~r2)

)
= 0 (4.3)

Hint 1: Compute the first equation of motion, then using a physical or mathematical argument
argue that the other two should take the form above.

Assume that m1 > m2 � m3 so that m1 and m2 orbit their center of mass like a regular
two-body problem with average separation distance a, this is called the restricted three-body
problem. Further assume that the masses have no initial velocities normal to the plane they
lie in originally, so that they will be confined to the same plane for their entire lifetime. Let
M = m1 +m2 +m3 ' m1 +m2.

When m1 � m2 Kepler’s third law says that the period of m2 about the CM is T = 2π
√

a3

GM
,

where a is the average distance between m1 and m2. When m1 > m2 (not �) the period is
slightly different, but this will be a good way to set the scale of dimensionless time.
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b. Using τ = t/T , ~wi = ~ri/a, m̃i = mi/M , and ~wij = ~wi− ~wj show that the equations of motion can
be rewritten

d2 ~wi
dτ 2

+ 4π

(
m̃j ~wij
w3
ij

+
m̃k ~wik
w3
ik

)
= 0 (4.4)

for (ijk) = (123), (231), (321), then simplify the two that have m3 terms using the fact that
m1 > m2 � m3.

c. Consider the following three scenarios, solve the associated restricted three-body problem for each
of them, and plot the solutions:

i. A planet of mass m1 = 9.25 × 1026kg, a planet of mass m2 = 7.5 × 1025kg, and a small
asteroid are detected at initial positions ~w1 = (0,−0.075), ~w2 = (0, 0.925), ~w3 = (0, 1.125),
with initial velocities ~̇w1 = (−0.15π, 0), ~̇w2 = (1.85π, 0), ~̇w3 = (2.85π, 0). Plot the time
evolution of the system from the reference frame of an alien on the largest planet for a few
τ . Note that the asteroid is “transferred” from planet to planet. When do the first and
second transfers occur?

ii. The aliens living on the largest planet (of the previous problem) have constructed a spherical
dome of radius 0.013a around the planet which could be damaged by the asteroid if they
collide. Current estimates predict asteroid-destroying lasers will be ready in time τ = 75.
Should the aliens increase the funding to their asteroid defence program?

iii. After losing power to all systems (except heat shields) the Millennium Falcon (mass 3) is left
stranded near the binary stars Tatoo I (65 solar masses) and Tatoo II (35 solar masses), at
initial positions ~w1 = (0,−0.2), ~w2 = (0, 0.8), ~w3 = (0, 1.1), with initial velocities ~̇w1 = (1, 0),
~̇w2 = (6, 0), ~̇w3 = (0, 0). Plot the evolution of the system as seen from the centre of mass
coordinate frame for τ = 5. If you’d like, compare it to any other coordinate system to see
how “natural” the centre of mass system is.

iv. Plot the kinetic energy of the Millennium Falcon (you’ll have to omit the m3/2 factor) as
measured from the center of mass coordinate system, up to τ = 12. We see in the quasi-
periodic range a set of sharp peaks (some decaying, and some getting larger), roughly what
points in the Falcon’s journey would these correspond to? Does the Falcon eventually escape
the binary stars? What is this represented by in the graph?

d. Let K be a reference frame that has its origin at the (dimensionless coordinates) center of mass,
and has its xy-plane configured so that the 3 masses lie in the xy-plane during their evolution.
Further suppose K is rotating about the center of mass with (dimensionless) angular velocity

~Ω = 2π/T ẑ (4.5)

then we see that m1 and m2 are stationary in the K frame, and their positions are r1 =
(−m̃2a, 0, 0) and r2 = (m̃1a, 0, 0) respectively. Show the EoM for m3 is

d2

dt2

(
x
y

)
+ 2Ω

d

dt

(
−y
x

)
= −∇Ueff (4.6)

in K, where

Ueff (x, y) = −1

2
Ω2(x2 + y2)−G(m1/r31 +m2/r32) (4.7)
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Hint 2: Use the formula relating lab and body frames in spinning problems derived in the course
notes. Then use Fnet = Fg = m~a3

Set the scale of distances by letting a = 1, and the scale of total mass (but not the important
mass ratios) by letting M = 1, so distance is given in dimensionless factors of a and M . Let
T = 2π, note how this sets the effective strength of gravity.

e. The Lagrange points are points in the frame K where m3 can sit at rest, ∇Ueff = 0. Show there
are two Lagrange points off the x-axis at exactly(

1

2
−m2,±

√
3

)
. (4.8)

Then show that the remaining Lagrange points are on the x-axis, and are the roots of a polynomial
of degree 5, and so cannot be solved for analytically.1

f. Write a program that takes in a mass m2 and plots the effective potential and computes (and
returns) the associated Lagrange points. Have the program superimpose the Lagrange points on
the Ueff plot. Do it for three systems

i. The Earth-Moon system.

ii. The Sun-Jupiter system.

iii. The binary stars of part c iii.

g. Make a contour plot of the Sun-Jupiter system with the Lagrange Points superimposed, increase
the total number of contours and use a plot range of [−1.4,−1.8]. You should be able to identify a
horse-shoe shaped band in the potential. Often inner moons and space debris are trapped in these
orbits in astronomical phenomena. Suppose you will inhabit a small space colony m3 constructed
next to one of the Lagrange points (x0 + 0.01, y0 + 0.01), where (x0, y0) are the coordinates of
the Lagrange point, and plan to live there for 100π time-units, superimpose the trajectory of
your colony over the plots you constructed previously. Assuming you want to remain relatively
stationary relative to Jupiter and the Sun (stable Lagrange point), where would you want to
build? Include a picture of one trajectory starting somewhere unfavourable and one trajectory
from a nice location.

1By the Abel-Ruffini Theorem.
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5 Year 4: Field Theory, Sine-Gordon, and Korteweg-de Vries

Learning Goals:

• Applying Principal of Least Action

• Applying Method of Lines to turn PDEs into coupled ODEs

• Solving coupled ODEs

• See soliton solutions for the first time

The Principal of Extremal Action is always true: the equation of motion is that which minimizes
the integral

S =

∫
Ω

L(ω, q(ω), . . . ) dω (5.1)

where ω is a collection of parameters and Ω is your available parameter space. In particular, we have
considered Lagrangians of the form L = L(t, q(t), q̇(t)), so that ω = t, Ω = [t1, t2], and we have shown
that the action

S =

∫ t2

t1

L(t, q(t), q̇(t)) dt (5.2)

is extremal when q(t) satisfies
dL

dq
− d

dt

(
∂L

∂q̇

)
= 0 . (5.3)

In field theories instead of having individual particles we have fields ϕ(x, t) which take on a value
everywhere in our spacetime, and we are interested in the value of these fields at different points (x, t).
Analogous to the particle-case, the equation of motion is that which minimizes the integral2

S =

∫
Ω

L(x, t, ϕ(x, t), . . . ) dx dt (5.4)

a. Suppose we have a Lagrangian density in a (1 + 1)-dimensional spacetime

L = L(x, t, ϕ(x, t), ∂xϕ(x, t), ∂tϕ(x, t), ∂xxϕ(x, t), ∂xtϕ(x, t), ∂ttϕ(x, t)) (5.5)

Show that the equation of motion for ϕ(x, t) is

0 =
∂L
∂ϕ
− ∂x

∂L
∂(∂xϕ)

− ∂t
∂L

∂(∂tϕ)
+ ∂xx

∂L
∂(∂xxϕ)

+ ∂xt
∂L

∂(∂xtϕ)
+ ∂tt

∂L
∂(∂ttϕ)

(5.6)

where ∂µ is the derivative with respect to µ, and ∂µµ = ∂2
µ = ∂µ∂µ.

The Lagrangian for a massive spin-0 scalar field with no interactions is given by the Klein-Gordon
Lagrangian

LKG =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 =

1

2
(∂tϕ)2 − 1

2
(∂xϕ)2 − 1

2
m2ϕ2 . (5.7)

The equation of motion is (�2 +m2)ϕ = 0.

2L is called the Lagrangian density for the system, and is related to L for particles by L =
∫
L dx.
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b. Find the equation of motion for the Sine-Gordon Lagrangian

LSG =
1

2
(∂tϕ)2 − 1

2
(∂xϕ)2 ±m2 cosϕ (5.8)

which finds applications in high-energy, solid-state, and biological physics.

Suppose we are interested in numerically investigating the evolution of ϕ over the interval (x, t) ∈
[xmin, xmax]× [tmin, tmax]. In the Method of Lines, we will replace the continuum in x with Nx+1
equally spaced points. Define δx = (xmax − xmin)/Nx, then our points are at xi = xmin + iδx for
i ∈ {0, 1, . . . , Nx}. Then we define ϕi(t) = ϕ(xi, t).

c. Show the following substitutions can be made

i. If only even order derivatives occur in the equation of motion, then

∂xxϕ(xi, t) '
ϕi+1(t)− 2ϕi(t) + ϕi−1(t)

δx2
(5.9)

ii. If only odd order derivatives occur in the equation of motion, then

∂xϕ(xi, t) '
ϕi+1(t)− ϕi−1(t)

2δx
(5.10)

∂xxxϕ(xi, t) '
ϕi+3(t)− 3ϕi+1(t) + 3ϕi−1(t)− ϕi−3(t)

(2δx)3
(5.11)

d. Using part c. and modular boundary conditions (xNx+1 = x0) write the Sine-Gordon equation
of motion as Nx + 1 coupled ODEs in t. Solve this by any method you choose, and produce 3D
plots (in x and t coordinates) of

i. x ∈ [−20, 20], t ∈ [0, 30], ϕ(x, 0) = exp(−x2), ∂tϕ(x, 0) = 0, m = 1, with plus sign in the
Lagrangian.

ii. x ∈ [−20, 20], t ∈ [0, 30], ϕ(x, 0) = exp(−x2), ∂tϕ(x, 0) = 0, m = 1, with minus sign in the
Lagrangian.

e. Repeat part b. for the (generalized) Korteweg-de Vries Lagrangian

LKdV =
1

2
∂xψ∂tψ + f(∂xψ)− 1

2
(∂xxψ)2 (5.12)

then make the substitution ϕ = ∂xψ. This equation was originally used to describe the motion of
waves in harbours, and has found applications in solid-state physics, plasma physics, petroleum
engineering, geophysics, and atmospheric physics.

f. Repeat part d. for the original Korteweg-de Vries equation (f(u) = u3) for the following conditions

i. x ∈ [−20π, 20π], t ∈ [0, 20], ϕ(x, 0) = 1
(2×0.9999)2

+ cn2(x/2; 0.9999), where cn is the appro-
priate Jacobi Elliptic function. Comment on the time evolution.

ii. x ∈ [−20, 50], t ∈ [0, 30], ϕ(x, 0) = (1/2) sech2(x/2). Comment on anything unusual.
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iii. x ∈ [−20, 50], t ∈ [−5, 10],

ϕ(x, 0) =
1 + 2 cosh(x) + cosh(

√
2x)

(2
√

2 cosh(x/2) cosh(x/
√

2)− 2 sinh(x/2) sinh(x/
√

2))2
. (5.13)

How does this compare to ii?

g. Return to the Sine-Gordon Lagrangian of part b, using the momentum density, π = ∂LSG

∂(∂tϕ)
, and

the appropriate Legendre transform, H = (∂tϕ)π − L, show that the Hamiltonian density is

HSG =
1

2
(∂tϕ)2 +

1

2
(∂xϕ)2 ∓m cosϕ (5.14)

Then for both sets of initial conditions in part d show that energy (the Hamiltonian) is conserved
(pretty well). Note

H =

∫
H dx (5.15)
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6 Year 4: The Toda Lattice and Hénon-Heiles

Learning Goals:

• Investigate the basic consequences of a Lax pair for integrability

• Derive the Toda lattice and plot its behaviour and a soliton solution

• Derive the the Hénon-Heiles potential from the modular 3 particle Toda lattice

• Show how integrability is lost in Hénon-Heiles

a. (Lax Pair Implies Integrability.) The physics of a problem may be described as the solution of
some (possibly non-linear) operator. For example, solutions to the wave equation in 1-dimension
are those ψ such that Tψ = 0 where

T =

(
∂2

∂t2
− c2 ∂

2

∂x2

)
(6.1)

Suppose we have two linear operators L(t) and P (t) satisfying Lψ = λψ and Pψ = dψ
dt

. Show
that λ does not change in time if and only if

dL

dt
= [P,L] . (6.2)

Thus we have as many constants of motion (the λ’s) as we do degrees of freedom, and so a system
in the form (6.2) is integrable.

b. (Non-Linear Springs.) Consider a 1-dimensional chain of N + 1 identical masses of mass m
connected by springs with nearest neighbour interaction potentials V . Denote the positions of
the masses by xi, i ∈ {0, 1, . . . , N}. Define qn = xn − xn−1 and q0 = x0.

i. Show that the Hamiltonian can be written

H =
1

2m

N∑
n=0

(pn − pn+1)2 +
N∑
n=1

V (qn) (6.3)

where we’ve defined pN+1 = 0. You can start with H = T + U .

ii. Derive Hamilton’s equations for this system.

Assuming V ′(q) is invertible (at least locally), then we have qj = −χ(ṗj)/m for some χ.
Taking a time derivative we have

χ(ṗj)p̈j = −2pj + pj−1 + pj+1 (6.4)

just like a regular spring with the χ factor. So the inverse of the derivative of the potential
classifies the non-linearity of the interaction.

c. (Toda’s Lattice.) Consider part b. with V (a) = e−a + a − 1. This defines Toda’s lattice, which
arises in field theory, modelling Langmuir oscillations in plasma physics, modelling conducting
polymers, quantum cohomology, and pure mathematics. Assume m = 1 throughout.
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i. Define

Ln = anA
+ + an−1A

− + bn (6.5)

Pn = anA
+ − an−1A

− (6.6)

where A±fn = fn±1. Show that L̇n = [Pn, Ln] implies

ȧn = an(bn+1 − bn) (6.7)

ḃn = 2(a2
n − a2

n−1) (6.8)

Thus if an = 1
2
e−qn+1/2 and bn = −1

2
(pn − pn+1) we recover the regular non-linear lattice

equations, so that the Toda Lattice is completely integrable.

ii. Using (qn, pn) coordinates and m = 1, use Mathematica to program Hamilton’s equations
and investigate the time evolution of the Toda Lattice. Use N large (at least 100) and plot
the time evolution of the lattice assuming

qn(0) = − log

[ (
−e2n/5 + e2(n+1)/5 + e2/5+40 sinh(1/5)

)2

(−e2n/5 + e2(n+1)/5 + e40 sinh(1/5)) (−e2n/5 + e2(n+1)/5 + e4/5+40 sinh(1/5))

]
and

pn(0) =
sech(1/5)

2
log

[
−e2(n+1)/5 + e2(n+2)/5 + cosh

(
2
5

+ 40 sinh(1
5
)
)

+ sinh
(

2
5

+ 40 sinh(1
5
)
)

−e2(n−1)/5 + e2n/5 + cosh
(

2
5

+ 40 sinh(1
5
)
)

+ sinh
(

2
5

+ 40 sinh(1
5
)
) ]

Include a picture of your plot time evolved at least ∆t = 50 units into the future. Describe
the behaviour of the solution. What is different about the evolution if pn(0) = 0 for all n?

iii. Do as in the previous problem for N = 200 and use the initial conditions pn(0) = 0 and
qn(0) = δ100,n. Include a picture of the plot evolved 50 time units into the future. Describe
the behaviour of the solution. Show that energy is conserved in at least the interval t ∈ [0, 80].

d. (The Hénon-Heiles Problem.) Consider a three particle Toda lattice with modular boundary
condions. The Hamiltonian is

H =
1

2
(p2

1 + p2
2 + p2

3) + e−(θ1−θ3) + e−(θ2−θ1) + e−(θ3−θ1) − 3 (6.9)

i. Derive a new Hamiltonian H ′( ~Q, ~P ) using the canonical transformation from the type-2
generating function

F2(~P , ~θ) = P1θ1 + P2θ2 + (P3 − P1 − P2)θ3 (6.10)

Argue by conservation of total momentum in the original problem that we may set P3 =
0. Derive a new Hamiltonian H ′′(x′, y′, p′x, p

′
y) from H ′( ~Q, ~P ) using the type-2 generating

function

G2(Q1, Q2, p
′
x, p
′
y) =

1

4
√

3

[
(p′x −

√
3p′y)Q1 + (p′x +

√
3p′y)Q2

]
(6.11)

Then perform a rescaling to conclude that H has the same dynamics as

H̄ =
1

2
(p2
x + p2

y) +
1

24

(
e−2
√

3x+2y + e2
√

3x+2y + e−4y
)
− 1

8
(6.12)
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ii. Expand H̄ in x and y to third order, and keep terms less than or equal to 3 powers in x
and y. This is the Hénon-Heiles Hamiltonian. This model originally was used to describe
the motion of stars around their galactic center. The model loses its integrability from
earlier, except in some very specific cases, showing that the full Toda structure is needed for
integrability.

iii. Plot the Poincaré section in the (y, py) plane for E = 0.01, 0.083, 0.12. Be sure to use many
different initial conditions to make sure you fill out the entire Poincaré section. Describe
a major difference between the first and second plot versus the third plot. Hint: It has
something to do with the fact that curves in the first two plots are very orderly.
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7 Year 4: The Standard Map

Learning Goals:

• Analyze and apply Poincaré sections and Liouville’s theorem to view the qualitative behaviour
of a system

• Analyze and apply the KAM theorem to understand the destruction of KAM tori and the rela-
tionship with continued fraction expansions

• Apply precise iterative methods to a problem with non-analytic solutions

• Realize connections to integrability of a system and Hamiltonian flows

Consider a free Hamiltonian which is periodically perturbed by a potential V (q) at a rate τ

H(p, q, t) = T (p) + V (q)
∞∑

n=−∞

δ(t− nτ) (7.1)

let qn and pn be the position and momentum just after the n-th perturbation.

a. Apply Hamilton’s equations of motion and show

pn+1 = pn − τV ′(qn+1) (7.2)

qn+1 = qn + τT ′(pn) (7.3)

Also show that areas in phase-space are preserved under evolution from (pn, qn)→ (pn+1, qn+1).

Take T (p) = p2/2, τ = 1, q = θ, and V (θ) = k cos(θ) (assume k ≥ 0), this could describe a free
pendulum that is kicked with a force proportional to its location in its swing.

b. Plot the (θ, p) Poincaré section for this system with modular boundary conditions (θ+2π = θ and
p + 2π = p). You can choose the 2π intervals to be centered at 0 or π (each highlights different
phenomena). A plot where

i. There is no perturbation. Comment on how you can tell graphically.

ii. There are islands of stability and unbroken KAM tori. Describe what is an island of stability
on your map, and what is an unbroken KAM tori.

iii. There are islands of stability but all KAM tori are broken.

iv. There is chaos. Comment on how you can tell graphically.

Each plot should have been run on at least 100 different initial conditions under at least 200
iterations of the map. Include the k-values on your plots.

c. Plot the unperturbed Poincaré section for 10 select initial conditions. In particular, ensure that
there are initial conditions with both rational and irrational winding numbers.

i. Just by looking at an unmarked plot, how can you tell which data on the plot correspond
to rational and irrational winding numbers? Include your plot to support your claim.
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ii. If you slowly increase the strength of the perturbation, which KAM tori break first? Does
this align with the predictions of the KAM theorem? Include your plot to support your
claim.

iii. Use the KAM theorem and the continued fraction expansion of Ω = (
√

5 − 1)/2 to argue
that it will be the last KAM torus to break. Include a plot with many different winding
numbers to support this.

Consider the standard map except suppose you added a dissipative term (1 − κ), κ ∈ [0, 1), in
front of each momentum term, p→ (1− κ)p.

d. Show for any κ that the fixed points are (0, 0) and (0, π). Show analytically that (0, 0) is always
unstable. Show either analytically or graphically (in one picture!) that (0, π) is:

i. An unstable repeller for 0 < k < 2−κ
1−κ −

2√
1−κ

ii. An unstable elliptic point for 2−κ
1−κ −

2√
1−κ < k < 2−κ

1−κ

iii. A stable elliptic point for 2−κ
1−κ < k < 2−κ

1−κ + 2√
1−κ

iv. A stable attractor for 2−κ
1−κ + 2√

1−κ < k <∞

e. For κ = 5/6 make the plot showcase how as you increase kick strength (0, π) goes from an unstable
repeller, to an unstable attractor, to an unstable repeller again, and then to a hyperbolic unstable
point.
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8 Year 4: The Logistic Map

Learning Goals:

• Analyze a prototypical and very simple example of a discrete dynamical system

• Introduce concepts of chaos theory and connections to bifurcation diagrams, fractals, self-similarity,
and the Lyapunov exponent

• Investigate islands of stability in a chaotic system

The Logistic Map is a discrete dynamical model with a continuous analogue that models popula-
tion growth in an ecosystem with finite resources. The discrete model has many different qualitative
properties and exhibits many of the fundamental characteristic behaviours of a chaotic system. The
map is given by

xj+1 = rxj(1− xj), xj ∈ [0, 1], r ∈ [0, 4] (8.1)

One sees that if we allowed r > 4 then r causes x to explode as j →∞ because xj(1− xj) is bounded
above by 1/4. Similarly, if r ∈ [0, 1] then x would go to 0 as j → ∞ since the powers of r overwhelm
the xj type terms. In fact, this is also the case if r ∈ (1, 3], that is, x → 1 − 1/r as j → ∞. The
interesting dynamics occurs in the range r ∈ (3, 4] because the r term effectively brings the quadratic
power of x to the same effective strength as the linear part.

a. Using x1 = 2/3 and r = 2 make a plot of xj. Notice how the plot eventually approaches the fixed-
point 1/2, after the “transient” behaviour is damped after the first few iterations. Try r = 2.5
to see even stronger transient behaviour. Now try r = 3.2, notice how (after damping) the plot
oscillates between two values, this is a 2-cycle. Try at the value r = 3.5, what cycle is this? Do
you find any type of cycle at r = 3.8? You do not need to include your plots of the cycles.

The splitting of a 2n-cycle to a 2n+1-cycle is called a bifurcation. A bifurcation diagram exhibits
the evolution of these stable points/cycles, it plots the stable points on the y-axis as a function
of the control parameter r on the x-axis.

b. Plot and include a bifurcation diagram for r ∈ [2.8, 4], using x1 = 2/3. For each r you will have
to run off a few hundred xj to be sure you reach steady-state behaviour, then plot a few hundred
more xj ON the plot at that r. This should give just the stable branches (or chaos) on your plot.
You will need to choose a very small step size in your parameter as it approaches 3.5. Included
for comparison is a bifurcation diagram for the discrete system xj+1 = rxj−1.5x4

j , which exhibits
the same “pitchfork bifurcations” that you should find, as well as eventual descent into chaos.
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c. Denote rn as the point where 2n−1 to 2n bifurcation occurs, ex. r1 = 3. Find as many bifurcation
points as you can before the onset of chaos at r∞ = 3.5699, you will need to find at least up to
r4. From the points, compute the ratios of successive bifurcation points to find the “Feigenbaum
constant.” Include or explain your code/algorithm.

δ = lim
n→∞

rn−1 − rn−2

rn − rn−1

(8.2)

One of the miracles of one-dimensional maps is that for any map xi+1 = f(xi; r), regardless of
the f , the ratios of successive bifurcations always tends to the same Feigenbaum constant.

Suppose near a 1-cycle we have a point x1 = x∗ + δx. Expanding to first order around x∗ we can
write x2 = f(x1) = x∗ + f ′(x∗)δx, x3 = f(f(x1)) = x∗ + f ′(f(x∗))f ′(x∗)δx = x∗ + [f ′(x∗)]2δx,
and generally xn = x∗ + [f ′(x∗)]n−1 δx. The point x∗ is then stable if |f ′(x∗)| < 1 and unstable if
|f ′(x∗)| > 1.

d. Show that for all x∗i and x∗j in an m-cycle that f (m)′(x∗i ) = f (m)′(x∗j). Use the result above to

declare that an m-cycle is stable if |f (m)′(x∗)| < 1 and unstable if |f (m)′(x∗)| > 1. Combine both
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your results to prove that the Lyapunov exponent, defined as

λ(r) = lim
m→∞

1

m

m∑
i=1

ln |f ′(x∗i )| (8.3)

is negative when there is stability, and positive when there is unstability/chaos. What is the
value at a bifurcation?

e. Plot the Lyapunov exponent as a function of r assuming x1 = 2/3. Look at the region r ∈ [3.4, 4]
in particular. Mark a point where a bifurcation happens and a point where chaos begins. Plot it
again for the region r ∈ [3.54, 3.66], what do you notice? (You do not have to include this plot.)

f. You will notice either on the full-scale Lyapunov plot, or the bifurcation diagram, a large island
of stability between 3.8 and 3.9. From the bifurcation diagram, we see that this island begins
with a 3-cycle. Use this fact to find value where the island of stability begins to at least 3-digits
of accuracy, OR compute the exact value.
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