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The Logistic Map
The logistic map is a recurrence relation given by

xj+1 := rxj(1 − xj) (1)

for xj ∈ [0, 1] and a fixed r ∈ [1, 4].

Introduction

Interest in the logistic map stems from evaluating
its long-term behaviour for different values of the
control parameter, r. Despite its simple definition
the logistic map is an ideal system for illustrating
chaos, including
• Stable behaviour growing increasingly complex
• A clear transition to chaos at a point, r∞
• Self-similar and fractal behaviours
• Islands of stability amidst chaotic behaviour

Stable and Unstable Behaviour

Below we iterate (1) for various values of r with
initial parameter x1 = 2/3. Different values of r
lead to very different qualitative behaviour after the
initial action of transient points is damped.
• A sequence of points xj, xj+1, xj+2, . . . is an orbit.
• If an orbit alternates between m points then the

orbit is an m-cycle of those fixed points.
• The value of r where a 2n-cycle splits into a

2n+1-cycle is a bifurcation point.
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Fig. 1: r = 2.0 (fixed point)
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Fig. 2: r = 3.2 (2-cycle)
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Fig. 3: r = 3.5 (4-cycle)
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Fig. 4: r = 4.0 (chaos)

Bifurcation Diagrams

A bifurcation diagram shows the change in orbit
structure as r varies by marking fixed points for each
value of r. To find these points we iterate (1) thou-
sands of times and then assume that all of the tran-
sient behaviour is removed so that further iterations
only produce fixed points, we then plot the results.
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Fig. 5: A bifurcation diagram with initial value x1 = 2/3. The
bifurcation point r2=3.4494, the limit of chaos r∞=3.5699, and
a large island of stability with no chaotic behaviour 1 +

√
8 are

marked. The r-value of bifurcation points is independent of x1.

For r < r∞ bifurcations are ‘pitchfok-shaped.’ By
Taylor expansion around a fixed point, we see why:

Theorem Let f (x) = rx(1 − x). If an m-cycle
bifurcates to a 2m-cycle at xb, then |f (2m)′(xb)| =
1. If p is a fixed point of the m-cycle, then
|f (2m)′(p)| > 1 and p is unstable after bifurcation.

The Lyapunov Exponent

The Lyapunov exponent is a measure of the speed
of divergence of infinitesimally close orbits. For us

λ(r) := 1
m

m∑
i=1

ln |f ′(x⋆
i )| (2)

λ(r) := lim
m→∞

1
m

m∑
i=1

ln |f ′(x⋆
i )| (3)

where x⋆
i is the i-th element of an m-cycle. We use

(2) for m-cycles, and (3) in the region of chaos.

• If a system is not sufficiently pathological,
λ(r) > 0 =⇒ chaos and λ(r) < 0 =⇒ stability.

• For the logistic map, λ(r) = 0 at bifurcations.
• For r < r∞, λ(r) ≤ 0. For r ≥ r∞, λ(r) takes

both positive and negative values.
The most chaotic point occurs at the maximum λ(4).
John von Neumann suggested using this as a random
number generator.
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Fig. 6: A plot of the Lyapunov exponent λ(r). The bifurcation
point r2=3.4494 is seen to be 0, a transition to chaos occurs
as λ(r) > 0 at the limit of chaos r∞=3.5699, and the island of
stability at 1 +

√
8 is seen to dive deeply negative.

Finding Bifurcations: A Numerical Problem
Analytic solutions for bifurcation points become unruly quickly. Instead, we find bifurcation points in the
same manner as we generate our diagram. If the bifurcation diagram is an m-cycle for some set of r < r∞,
then the bifurcation point is the infimum of this set. The first 6 bifurcation points are approximately:
3, 3.4494, 3.5440, 3.5644, 3.5687, 3.5696. Ratios of successive differences tend to Feigenbaum’s Constant:

rn − rn−1

rn+1 − rn
→ 4.669201 . . . as n → ∞

An Island of Stability
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Fig. 7: The bifurcation digram from Fig. 5 zoomed into 1 +
√

8
(and translated). Chaos from r < 1 +

√
8 closes off abruptly

to a 3-cycle. The 3-cycles bifurcate, and the middle one shows
very clear self-similarity to Fig. 5.

Using numerical methods we solve f (3)(x) = x and
confirm the existence of a 3-cycle at 1 +

√
8. In par-

ticular, there are 3 double roots which are neutrally
stable and bifurcate, and two unstable roots.
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