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introduction

What limits the height to which trees can grow?

(a)Hydraulic (b)Mechanic
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introduction

Cohesion-tension theory of water
transport.
Xylem transports water and solutes
from the roots to the leaves.
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introduction

Mechanics: elastic deflections,
self-buckling and beyond
Vertical and horizontal stems.
Cantilevered and columnar support
members.
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Allometry
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allometrics in trees

Assuming that mechanical properties of wood are comparatively uniform:

lcrit =
(

7.8373 YI
ρgA

)1/3
,

H ∝ D2/3, M ∝ D8/3.

(1)

These expressions can be derived without any mechanical assumptions

GT︸︷︷︸
Annual Growth Rate

= β0ML = β1M3/4
T . (2)

β denotes allometric constants.
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allometrics in trees

More allometric relationships:

MT = ML + MS + MR

ML = β2D2, MR = β3MS, MS = β4D2H.
(3)

Plugging these relations into eq. (2):

H = β5D2/3 − β6, MS = β4

(
β5D8/3 − β6D6/3

)
. (4)
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allometrics in trees

Scalings for herbaceous plants with β5 = 35.64 &
β6 = 0.475. Dashed and solid straight lines are
results obtained with the Greenhill-Euler formula.

β5 & β6 can not be predicted.

Empirical numerical values result
in very precise estimates.
Greenhill-Euler formula
over-estimate values and
presupposes mechanical
limitations.
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Mechanical Damage
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tall trees: wind damage

Is it dangerous to be a tall tree?

Trees fail mechanically only due to wind.
So we may expect tall trees to be more susceptible to
falling.

This happens in two main ways:
1. Uprooting: Shearing at soil-root interface
2. Breakage: Excessive bending stress exceeding wood

breaking stress
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tall trees: a model tree

Sphere of leaves of radius rL

Mounted to trunk of diameter D
and height Hm

Connected to hemisphere of roots
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tall trees: uprooting

To be safe from uprooting
τwind = τroot (5)

Working with τwind:

τwind ∝ Fwind

∝ (AL v2
wind )Hm

Aerodynamic drag means wind speed varies as one climbs higher in the atmosphere.
In a tree filled region vwind ∝

√
height

τwind ∝ r2
L H2

m
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tall trees: uprooting

If ML is the mass of leaves, then ML ∝ r3
L

It is known in the botany literature that M2
L ∝ D2 for large plants, giving:

r2
L ∝ D4/3

We use our previously derived result that Hm ≈ H ∝ D2/3

So that
τwind ∝ D8/3 ∝ MS (6)
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tall trees: uprooting

For the root system, we have
τroot ∝ MR (7)

So that

τwind = τroot

=⇒ MS ∝ MR (8)

Which is a well known result, supporting the proposition that tall trees won’t be uprooted.
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tall trees: a note on breakage

Following §19. of L&L’s “Theory of
Elasticity” and successive exercises
we get the EoM

θ′′ = −mg
EI cos θ (9)

Using empirical facts about
breakage under stress, wood
properties, it can be shown that
critical wind speed for breakage is

vwind,c =

√
π

16
KIc
δ

β3/2

ρaircd
L1/8 (10)

≈ 42m/s
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Modelling xylem
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xylem structure

Xylem: plant tissue, transports water and nutrients
froom roots to leaves

Approximation: the xylem is a cylindrical tybe of
constant radius

We can calculate the rate at which water is
transported - this gives us an estimate for maximum
tree height

17 / 24



continuum approximation

We can treat the fluid as continuous
We write down Newton’s second law for a small part
of the fluid:

ma⃗ = m⃗fvol.︸ ︷︷ ︸
volume part

+ ∆F⃗surf.︸ ︷︷ ︸
surface part

volume force density: f⃗vol. = lim
∆m→0

∆F⃗
∆m

what about surface forces?
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stress tensor

∆F⃗surf. =
¸

pd⃗S

=
¸

Π̂︸︷︷︸
stress tensor

n⃗dS

Π̂: stress tensor, diagonal elements related to pressure

Allows us to go from a surface integral to a volume integral

Using Gauss’ theorem we get:
∆F⃗surf. =

¸
Π̂n⃗dS =

´
∇Π̂dV ≈ ⟨∇Π̂⟩ ·∆V

Finally we get:

a⃗ =
d⃗v
dt = f⃗vol. +

∇Π̂

ρ
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stokes equation

How do we get Π̂ ?

Π̂ = −pÎ + Λ̂︸︷︷︸
viscosity

For a large class of fluids we can use a specific form for Λ̂

When we plug it into the previous equation:

a⃗ =
d⃗v
dt = f⃗vol. −

∇p
ρ

+

viscosity coeff.︷︸︸︷
ν

ρ
∆v⃗
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back to xylem

Our case:

Stationary flow: d⃗v
dt = 0

Constant pressure gradient along z axis: ∇p = Ke⃗z

0 = −K
ρ
+

ν

ρ

1
r

d
dr

(
rdv(r)

dr

)
We can solve this equation to get v(r)!
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maximum height approximation

We have: v(r) = KR2

4ν
(
1 − ( r

R )2)
The rate of flow is: Q =

´
ρ⃗vd⃗S

Finally, we get:

Q = −πR4

8ν · ∆P
∆h

Any increase in tube length decreases the flow rate!
We can approximate ∆hmax if we know Qmin!
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conclusion

Mechanical factors don’t limit tree height

But, hydraulic factors do

We can model how water is transported through xylem to arrive at an estimate for
maximum tree height
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Questions?
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