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Background: Tiling

De�nition (Tiling)

A tiling of Rd is a non-empty countable collection of closed sets
in Rd, T = {Ti : i ∈ I}, subject to the constraints that:

1
⋃

i∈I Ti = Rd

2 T ◦i ∩ T ◦j = ∅ for i 6= j

Ti are the tiles of T , and their equivalence classes up to
congruence are the prototiles of T , and T is admissible by
that set of prototiles.

The symmetries of T are isometries that map T onto itself,
and T is nonperiodic if it has no translational symmetry.
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Background: Tiling

Periodic tiling by M.C. Escher Nonperiodic tiling by Heinz
Voderberg
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Background: Wang Dominoes

In 1961 Hao Wang asked if there was a decision procedure
to determine if a set of square prototiles (equipped with the
rule that adjacent colours must match) would tile R2.

Decision procedure i� any set of dominoes tiles the plane
nonperiodically also tiles it periodically.
Using 20, 426 prototiles, Robert Berger showed a set of
prototiles tiled R2 only nonperiodically.

A set of prototiles that only admits nonperiodic tilings is
called aperiodic.
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Background: Quasicrystals

In 1982 Dan Shechtman (2011 Nobel Prize, Chemistry)
produced a sample of Al6Mn with the di�raction pattern

Classically forbidden di�raction pattern.
Explainable as the di�raction of a lattice described by a
quasiperiodic function: sin(x) + sin(τx) .
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Penrose Tiles: The P2 Tiles

In 1977 Martin Gardner revealed Roger Penrose's �P2�
tiling, the Kites and Darts

The tiles are free to rotate/�ip.
Subject to matching rule that black and white vertices join,
or red and green lines go unbroken (Robinson's rules).

The Kites and Darts are an aperiodic set of prototiles.
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Penrose Tiles: A P2 Tiling
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Penrose Tiles: The P3 Tiles

The Penrose P2 tiles are equivalent to the P3 Penrose tiles

The P2 and P3 Penrose tiles are mutually locally derivable,
one can be obtained from the other by a local map.
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Penrose Tiles: A P3 Tiling
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Penrose Tiles: Properties

There are many equivalent ways to generate the Penrose
tilings, beyond matching rules

Ammann lines
Cut and project method
de Bruijn's pentagrids
Substitution rules (imperfect substitution rules)

There is an uncountable number of distinct Penrose tilings

Each Penrose MLD-class is locally indistinguishable. Any
�nite patch of a Penrose tiling occurs in every other tiling.
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Penrose Tiles: Defected Tilings
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Penrose Tiles: Legal Vertices

The only legal con�gurations around a vertex in a Penrose
tiling are

A natural quasicrystal cannot adjust itself for the
non-locality in laying Penrose tiles
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Penrose Tiles: Legal Vertices
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Ammann Lines: Introduction

Ammann came up with a marking of Penrose tiles,
equivalent to the regular matching rules, now called
Ammann lines
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Ammann Lines: Properties

We can now see the quasicrystalline nature of the Penrose
tiles

Ammann lines alternate long and short as a one-dimensional
quasilattice, and clearly shows non-periodicity

Ammann lines show the long range order of a Penrose tile,
putting a tile down forces a whole line of options along each
Ammann line

In �Coxeter Pairs, Ammann Patterns and Penrose-like
Tilings� Steinhardt and Boyle construct a set of irreducible
Ammann patterns from speci�c pairs of crystallographic
and non-crystallographic �nite Coxeter groups.

Only �eshed out for groups such that dnc/dc = 2.
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Ammann Lines: Tiles

The 2D Ammann lines that are grids of 1D quasicrystals:

1 set with 5/10-fold symmetry
2 sets with 8-fold symmetry
3 sets with 12-fold symmetry

There is reason to believe these should be the simplest.
8-fold tiling with Ammann lines
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Ammann Lines: Vertex Tiles

When we recon�gure the tiles on the Ammann lines in a
di�erent way, vertices mark the tiles in very di�erent ways.

We introduce a vertex prototile to alleviate these
discrepancies. Should it have been there all along?
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Ammann Lines: 8 Fold Tiles

The 8-fold Ammann lines e�ectively force us to remark our
square/rhomb/vertex tile as follows

Are these prototiles equivalent to the regular 8-fold tiles?
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Topology: Introduction

Treating the matching rule arrows as �charges,� the Penrose
tiles have no net charge when you travel a path around a
tile (and thus a patch).

Topological properties of a defected tiling could lead to
interesting math/physics
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de Bruijn Multigrids
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Degenerate Structure
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Topology: The Decapod
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Topology: The Decapod

Defected tiling, pointed out by John Conway. Can be seen
as one of the most defected tilings (via Ammann lines or
Pentagrid construction).

In each of the ten directions an in�nitely long strip of
forced tiles or �Conway Worms� extends from the central
decapod.

Each Conway worm can be �ipped to produce a di�erent
valid decapod.
Up to rotation and �ip, there are 62 distinct decapods
(Burnside's Lemma).

Travelling around the decapod we do not accumulate any
two-arrow charge, but we accumulate a one-arrow charge
of: 10, 8, 6, 4, 2, or 0.

The decapods cannot be di�erentiated by their single arrow
charge. The decpod count is: 1, 1, 5, 12, 22 and 21
respectively (Pólya necklaces).
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Penrose Vertex: Introduction

In the Ammann 8 and 12-fold tilings the vertex tiles are
forced, and generate the same tilings as the prototile sets
without the vertices.

The Ammann lines on the 10-fold tilings do not force a
vertex tile.

Can we construct a vertex tile for the Penrose tiling that
adds a new set of charges and lifts the degeneracy on the
Decapods?

25 / 39



Penrose Vertex: Introduction

In the Ammann 8 and 12-fold tilings the vertex tiles are
forced, and generate the same tilings as the prototile sets
without the vertices.

The Ammann lines on the 10-fold tilings do not force a
vertex tile.

Can we construct a vertex tile for the Penrose tiling that
adds a new set of charges and lifts the degeneracy on the
Decapods?

25 / 39



Penrose Vertex: Introduction

In the Ammann 8 and 12-fold tilings the vertex tiles are
forced, and generate the same tilings as the prototile sets
without the vertices.

The Ammann lines on the 10-fold tilings do not force a
vertex tile.

Can we construct a vertex tile for the Penrose tiling that
adds a new set of charges and lifts the degeneracy on the
Decapods?

25 / 39



Penrose Vertex: The Future

So we cannot split the Decapod degeneracy with one new
charge. Two new charges is similar.

Binary tiles?

Two vertex tiles?

Non-binary charges. sl3C-type charge maybe?

Applications to lattice gauge theories, QFT, QG.

Can we create the analagous Octapod and Dodecapod?
Will their degenerate states be splittable?

Is there a connection between Ammann Lines and games of
billiards?

Are there local matching rules for the 12-fold
square-triangle tiling?
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Ammann 8-Fold Tiling
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Ammann 12-Fold Tiling
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Square-Triangle Tiling
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Octopod
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Cut and Project
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Cut And Project: 5-Fold (Penrose)
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Cut And Project: 7-Fold
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Cut And Project: 11-Fold
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Cut And Project: 17-Fold
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Other Junk: Holographic Quasicrystals
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Other Junk: MERA
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Other Junk: Topological Photonics
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Other Junk: Topological Insulators
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