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Background: Tiling

Definition (Tiling)
A tiling of R? is a non-empty countable collection of closed sets
in R, T = {T; : i € I}, subject to the constraints that:

@ Ui, i =R
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Background: Tiling

Definition (Tiling)

A tiling of R? is a non-empty countable collection of closed sets
in R, T = {T; : i € I}, subject to the constraints that:

@ U Ti =R
@ TP NTY =0 fori#j

> T; are the tiles of T, and their equivalence classes up to
congruence are the prototiles of T, and T is admissible by
that set of prototiles.

> The symmetries of T are isometries that map T onto itself,
and T is nonperiodic if it has no translational symmetry.
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Background: Tiling

Nonperiodic tiling by Heinz
S =B = Voderberg

=
e

Periodic tiling by M.C. Escher
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ound: Wang Dominoes

X [0 04 g I BXC

> In 1961 Hao Wang asked if there was a decision procedure
to determine if a set of square prototiles (equipped with the
rule that adjacent colours must match) would tile R?.
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> In 1961 Hao Wang asked if there was a decision procedure
to determine if a set of square prototiles (equipped with the
rule that adjacent colours must match) would tile R?.

-+ Decision procedure iff any set of dominoes tiles the plane
nonperiodically also tiles it periodically.
- Using 20,426 prototiles, Robert Berger showed a set of
prototiles tiled R? only nonperiodically.

> A set of prototiles that only admits nonperiodic tilings is
called aperiodic.
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Background: Quasicrystals

= In 1982 Dan Shechtman (2011 Nobel Prize, Chemistry)
produced a sample of AlgMn with the diffraction pattern

- Classically forbidden diffraction pattern.
- Explainable as the diffraction of a lattice described by a
quasiperiodic function: sin(x) + sin(7zx).
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Penrose Tiles: The P2 Tiles

> In 1977 Martin Gardner revealed Roger Penrose’s “P2”
tiling, the Kites and Darts
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Penrose Tiles: The P2 Tiles

> In 1977 Martin Gardner revealed Roger Penrose’s “P2”

tiling, the Kites and Darts

The tiles are free to rotate/flip.
Subject to matching rule that black and white vertices join,
or red and green lines go unbroken (Robinson’s rules).

The Kites and Darts are an aperiodic set of prototiles.
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Penrose Tiles: The P3 Tiles

> The Penrose P2 tiles are equivalent to the P3 Penrose tiles
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Penrose Tiles: The P3 Tiles

> The Penrose P2 tiles are equivalent to the P3 Penrose tiles

> The P2 and P3 Penrose tiles are mutually locally derivable,
one can be obtained from the other by a local map.
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Penrose Tiles: Properties

> There are many equivalent ways to generate the Penrose
tilings, beyond matching rules
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Penrose Tiles: Properties

> There are many equivalent ways to generate the Penrose
tilings, beyond matching rules
Ammann lines
- Cut and project method
- de Bruijn’s pentagrids
Substitution rules (imperfect substitution rules)

e

There is an uncountable number of distinct Penrose tilings

> Each Penrose MLD-class is locally indistinguishable. Any
finite patch of a Penrose tiling occurs in every other tiling.

11 / 39



Penrose Tiles: Defected Tilings
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The only legal configurations around a vertex in a Penrose
tiling are

(a) The D. (b) The Q. (c) The K. (d) The J.

(e) The S. () The S3. (g) The 4. () The S5.
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The only legal configurations around a vertex in a Penrose
tiling are

PR
T

[/

(a) The D. (b) The Q. (c) The K. (d) The J.

(e) The S. () The S3. (g) The 4. () The S5.

A natural quasicrystal cannot adjust itself for the

non-locality in laying Penrose tiles
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Penrose Tiles: Legal Vertices
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Ammann Lines: Introduction

> Ammann came up with a marking of Penrose tiles,
equivalent to the regular matching rules, now called

Ammann li/nes \
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Ammann Lines: Propert

We can now see the quasicrystalline nature of the Penrose
tiles

Ammann lines alternate long and short as a one-dimensional
quasilattice, and clearly shows non-periodicity
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Ammann Lines: Properties

We can now see the quasicrystalline nature of the Penrose
tiles
- Ammann lines alternate long and short as a one-dimensional
quasilattice, and clearly shows non-periodicity
Ammann lines show the long range order of a Penrose tile,
putting a tile down forces a whole line of options along each
Ammann line
> In “Coxeter Pairs, Ammann Patterns and Penrose-like
Tilings” Steinhardt and Boyle construct a set of irreducible
Ammann patterns from specific pairs of crystallographic
and non-crystallographic finite Coxeter groups.

- Only fleshed out for groups such that d,,./d. = 2.
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Ammann Lines: Proper

We can now see the quasicrystalline nature of the Penrose
tiles
Ammann lines alternate long and short as a one-dimensional
quasilattice, and clearly shows non-periodicity
Ammann lines show the long range order of a Penrose tile,
putting a tile down forces a whole line of options along each
Ammann line

In “Coxeter Pairs, Ammann Patterns and Penrose-like
Tilings” Steinhardt and Boyle construct a set of irreducible
Ammann patterns from specific pairs of crystallographic
and non-crystallographic finite Coxeter groups.

Only fleshed out for groups such that d,,./d. = 2.

non-crystallographic root system 6l ‘ crystallographic partner 6 ‘ degree N = d/dH

I¥ (p any prime > 5) Ap1 (p—1)/2
IZ" (m any integer > 3) Bym-1/Com—1 gm—2
1212 Fy 2
o Es 4
Hs Ds 2
Hy Eg 2
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Ammann Lines: Tiles

The 2D Ammann lines that are grids of 1D quasicrystals:
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Ammann Lines: Tiles

=» The 2D Ammann lines that are grids of 1D quasicrystals:
- 1 set with 5/10-fold symmetry

-~ 2 sets with 8-fold symmetry

- 3 sets with 12-fold symmetry
=> There is reason to believe these should be the simplest.
= 8-fold tiling with Ammann lines
l‘a'l‘.l‘~l‘\
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Ammann Lines: Vertex Tiles

> When we reconfigure the tiles on the Ammann lines in a
different way, vertices mark the tiles in very different ways.
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Ammann Lines: Vertex Tiles

> When we reconfigure the tiles on the Ammann lines in a
different way, vertices mark the tiles in very different ways.

> We introduce a vertex prototile to alleviate these
discrepancies. Should it have been there all along?
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Ammann Lines: 8 Fold Tiles

> The 8-fold Ammann lines effectively force us to remark our

square/rhomb/vertex tile as follows
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Ammann Lines: 8 Fold Tiles

> The 8-fold Ammann lines effectively force us to remark our

square/rhomb/vertex tile as follows

Are these prototiles equivalent to the regular 8-fold tiles?
19 / 39




Topology: Introduction

> Treating the matching rule arrows as “charges,” the Penrose
tiles have no net charge when you travel a path around a
tile (and thus a patch).
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Topology: Introduction

> Treating the matching rule arrows as “charges,” the Penrose
tiles have no net charge when you travel a path around a
tile (and thus a patch).

Topological properties of a defected tiling could lead to
interesting math /physics
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de Bruijn Multigrids
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agrid with 3; = 0 for all j

Figure 4.2: The orthogonal dual of the singular pent



Topology: The Decapod
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Topology: The Decapod

> Defected tiling, pointed out by John Conway. Can be seen
as one of the most defected tilings (via Ammann lines or
Pentagrid construction).
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Topology: The Decapod

> Defected tiling, pointed out by John Conway. Can be seen
as one of the most defected tilings (via Ammann lines or
Pentagrid construction).

> In each of the ten directions an infinitely long strip of

forced tiles or “Conway Worms” extends from the central
decapod.

- Each Conway worm can be flipped to produce a different
valid decapod.
Up to rotation and flip, there are 62 distinct decapods
(Burnside’s Lemma).
> Travelling around the decapod we do not accumulate any
two-arrow charge, but we accumulate a one-arrow charge
of: 10, 8, 6, 4, 2, or 0.
> The decapods cannot be differentiated by their single arrow
charge. The decpod count is: 1, 1, 5, 12, 22 and 21
respectively (Polya necklaces).
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Penrose Vertex: Introduction

> In the Ammann 8 and 12-fold tilings the vertex tiles are
forced, and generate the same tilings as the prototile sets
without the vertices.
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Penrose Vertex: Introduction

> In the Ammann 8 and 12-fold tilings the vertex tiles are
forced, and generate the same tilings as the prototile sets
without the vertices.

> The Ammann lines on the 10-fold tilings do not force a
vertex tile.

Can we construct a vertex tile for the Penrose tiling that
adds a new set of charges and lifts the degeneracy on the
Decapods?
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Penrose Vertex: The Future

> So we cannot split the Decapod degeneracy with one new
charge. Two new charges is similar.

26 / 39



Penrose Vertex: The Future

> So we cannot split the Decapod degeneracy with one new
charge. Two new charges is similar.

Binary tiles?

26 / 39



Penrose Ve The Future

> So we cannot split the Decapod degeneracy with one new
charge. Two new charges is similar.

Binary tiles?

Two vertex tiles?

26 / 39



Penrose Ve The Future

> So we cannot split the Decapod degeneracy with one new
charge. Two new charges is similar.

Binary tiles?
Two vertex tiles?

> Non-binary charges. sl3C-type charge maybe?
Applications to lattice gauge theories, QFT, QG.

26 / 39



Penrose Vertex: The Future

> So we cannot split the Decapod degeneracy with one new
charge. Two new charges is similar.

Binary tiles?
Two vertex tiles?
> Non-binary charges. sl3C-type charge maybe?
Applications to lattice gauge theories, QFT, QG.

> Can we create the analagous Octapod and Dodecapod?
Will their degenerate states be splittable?

26 / 39



Penrose Vertex: The Future

> So we cannot split the Decapod degeneracy with one new
charge. Two new charges is similar.

Binary tiles?
Two vertex tiles?

> Non-binary charges. sl3C-type charge maybe?
Applications to lattice gauge theories, QFT, QG.

> Can we create the analagous Octapod and Dodecapod?
Will their degenerate states be splittable?

> Is there a connection between Ammann Lines and games of
billiards?

26 / 39



Penrose Vertex: The Future

> So we cannot split the Decapod degeneracy with one new
charge. Two new charges is similar.

Binary tiles?
Two vertex tiles?
> Non-binary charges. sl3C-type charge maybe?
Applications to lattice gauge theories, QFT, QG.

> Can we create the analagous Octapod and Dodecapod?
Will their degenerate states be splittable?

> Is there a connection between Ammann Lines and games of
billiards?

Are there local matching rules for the 12-fold
square-triangle tiling?
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Ammann 8-Fold Tiling
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Ammann 12-Fold Tiling
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Cut And Project: 5-Fold (Penrose)
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Cut And Project: 11-Fold
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Cut And Project: 17-Fold
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Other Junk: Holographic

Quasicrystals

vertex
completion

letters

assign assign
letters

letter
inflation
K\ S

o

0

A(S) = [BPABAB®A] A(S") = [BAB'AB*AB*A

3 times
assign assign
cells 11

cells

s

AN

Q(S) = [222322232223]

Q) =

[22322322323)
Ny tindte’

3 times
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Other Junk: MERA
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Other Junk: Topological Photonics

Topological Photonic Quasicrystals: Fractal Topological Spectrum
and Protected Transport

Miguel A. Bandres,1 Mikael C. Rechtsman,l‘2 and Mordechai Segcvl
]Physics Department and Solid State Institute, Technion, 32000 Haifa, Israel
2.L?’e’,m.m‘menr of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
(Received 11 June 2015; revised manuscript received 24 September 2015; published 22 February 2016)
‘We show that it is possible to have a topological phase in two-dimensional quasicrystals without
any magnetic field applied, but instead introducing an artificial gauge field via dynamic modulation. This
topological quasicrystal exhibits scatter-free unidirectional edge states that are extended along the system’s
perimeter, contrary to the states of an ordinary quasicrystal system, which are characterized by power-law
decay. We find that the spectrum of this Floquet topological quasicrystal exhibits a rich fractal (self-similar)
structure of topological “minigaps,” manifesting an entirely new phenomenon: fractal topological systems.
These topological minigaps form only when the system size is sufficiently large because their gapless edge
states penetrate deep into the bulk. Hence, the topological structure emerges as a function of the system
size, contrary to periodic systems where the topological phase can be completely characterized by the unit
cell. We demonstrate the existence of this topological phase both by using a topological index (Bott index)
and by studying the unidirectional transport of the gapless edge states and its robustness in the presence of
defects. Our specific model is a Penrose lattice of helical optical waveguides—a photonic Floquet
quasicrystal; however, we expect this new topological quasicrystal phase to be universal.

DOI: 10.1103/PhysRevX.6.011016 Subject Areas: Optics, Photonics, Topological Insulators
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Other Junk: Topological Insula

>
Topological States and Adiabatic Pumping in Quasicrystals

Yaacov E. Kraus,' Yoav Lahini,2 Zohar Ringcl,l Mor Verbin,? and Oded Zilbcrbcrg1
chpartment of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
2Deparrmem of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel
(Received 29 March 2012; published 4 September 2012)

The unrelated discoveries of quasicrystals and topological insulators have in turn challenged prevailing
paradigms in condensed-matter physics. We find a surprising connection between quasicrystals and
topological phases of matter: (i) quasicrystals exhibit nontrivial topological properties and (ii) these
properties are attributed to dimensions higher than that of the quasicrystal. Specifically, we show, both
theoretically and experimentally, that one-dimensional quasicrystals are assigned two-dimensional Chern
numbers and, respectively, exhibit topologically protected boundary states equivalent to the edge states of
a two-dimensional quantum Hall system. We harness the topological nature of these states to adiabatically
pump light across the quasicrystal. We generalize our results to higher-dimensional systems and other
topological indices. Hence, quasicrystals offer a new platform for the study of topological phases while
their topology may better explain their surface properties.

DOI: 10.1103/PhysRevLett.109.106402 PACS numbers: 71.23.Ft, 05.30.Rt, 42.70.Qs, 73.43.Nq
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