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introduction



chern-simons theory: what

The Chern-Simons action in (2 + 1) dimensions is

SCS =

∫
M
Tr

(
A ∧ dA +

2
3A ∧ A ∧ A

)

In components, the Lagrangian is

LCS =
k

4π ϵ
µνρ

(
Aµ∂νAρ +

2
3AµAνAρ︸ ︷︷ ︸
Non-Abelian

)

LCS is NOT gauge invariant. But if the level k ∈ Z then we note that

exp(i SCS[A])

is unchanged. This is all we care about for our quantum theory.
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chern-simons theory: why

Where do we find Chern-Simons theories?

◦ Canonical example of a topological quantum field theory
◦ Knot invariants are expectation values of Wilson loops in Chern-Simons theories
◦ Quantum Hall effect and topological matter theories (theories with anyons)

Some neat facts about Chern-Simons theories:

◦ Time reversal invariant depending on level of k and gauge group
◦ Bosonization duality between Chern-Simons with bosons and with fermions
◦ Large N Chern-Simons matter theories are dual to higher spin gravity in AdS4
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chern-simons matter theories

Chern-Simons with U(N) gauge fields coupled to fundamental bosons and fermions

LBos = LCS + Dµϕ̄Dµϕ+ m2
Bϕ̄ϕ+

b4
2Nb

(ϕ̄ϕ)2

LFer = LCS + ψ̄ /Dψ + mf ψ̄ψ

Conjecture

There is a duality:

U(N) LBos at level k ↔ U(|k| − N) LFer at level − k

Supported by evidence:

◦ 3pt functions match in N → ∞
◦ Thermal partition functions matching in N → ∞
◦ SUSY duality can be constructed which flows to these ones after SUSY breaking
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s-matrix: bootstrap

Trying to construct the S-matrix just from consistency principles is the S-matrix
bootstrap.

◦ Probability conservation ⇒ unitarity
◦ Lorentz invariance ⇒ only depends on invariant scalars
◦ Causality

Causality is usually upgraded to a slightly stronger condition: that transition amplitudes
are real-boundary values of analytic functions F(s, t, u) in complex s-plane.

S = 1 + i (2π)d δ(d)(p1 + p2 − p3 − p4) F(s, t, u)
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s-matrix: crossing-symmetry

Crossing symmetry means the
amplitude for something like

s : A1 + A2 → A3 + A4

can be obtained from

u : A1 + Ā4 → A3 + Ā2

by analytic continuation of
F(s, t, u).
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the project



literature: duality of amplitudes

In (1404.6373), Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama calculated amplitudes to
test the boson-fermion fundamental matter duality.

◦ In large N and k, λ = N/k fixed, authors showed S-matrices of bosonic and fermionic
theories map to one another after level-rank transposition for 2 → 2 scattering.

◦ Unusual properties including failure of crossing symmetry. ψψ → ψψ is modified by

f(λ) = sin(πλ)

πλ

when trying to extend to ψ̄ψ → ψ̄ψ.
◦ Believe this factor comes from a need to attach Wilson lines to fermions to make
correlation functions gauge invariant.

◦ Not clear if what they found is a large N artifact. Want to do calculation in usual
perturbative regime (k → ∞) but N finite.
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our research: fermions at one-loop

We calculate fundamental fermion scattering at one loop to test crossing symmetry.

Anomalous magnetic moment Photon Correction
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our research: fermions at one-loop

Box

◦ There are two diagrams that have
an anomalous magnetic
moment-type correction

◦ There is also a crossed box.
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our research: a sample problem

Expressions are quite large and need to be tackled algebraically

= −e4ϵµνλϵσρβ

∫ d3k
(2π)3

(ū3γ
ρ[/l + M]γµu1)

l2 − M2

×
(v̄2γ

σ[ /p1 − /l − /p4 + M]γνv4)

(p1 − l − p4)2 − M2

× (p1 − l)λ(p3 − k)β
(p1 − l)2(p3 − l)2
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our research: computer problems

On the programming side, made code to

1. Take diagram input and reduce products of gamma functions using

γαγβ = gαβ − iϵαβσγσ

It also has to simplify terms, perform contractions, and deal with epsilon tensors!

2. Trace over the integrand to separate factors proportional to 1 and γµ

3. Implement the Gordon identities to contract legs with terms

w̄1γ
µw2 = #(#µ − ϵµνρ#ν#ρ)w̄1w2

4. Collect the expression into sums of terms proportional to known master integrals

13 / 18



our research: computer problems

On the programming side, made code to

1. Take diagram input and reduce products of gamma functions using

γαγβ = gαβ − iϵαβσγσ

It also has to simplify terms, perform contractions, and deal with epsilon tensors!
2. Trace over the integrand to separate factors proportional to 1 and γµ

3. Implement the Gordon identities to contract legs with terms

w̄1γ
µw2 = #(#µ − ϵµνρ#ν#ρ)w̄1w2

4. Collect the expression into sums of terms proportional to known master integrals

13 / 18



our research: computer problems

On the programming side, made code to

1. Take diagram input and reduce products of gamma functions using

γαγβ = gαβ − iϵαβσγσ

It also has to simplify terms, perform contractions, and deal with epsilon tensors!
2. Trace over the integrand to separate factors proportional to 1 and γµ

3. Implement the Gordon identities to contract legs with terms

w̄1γ
µw2 = #(#µ − ϵµνρ#ν#ρ)w̄1w2

4. Collect the expression into sums of terms proportional to known master integrals

13 / 18



our research: computer problems

On the programming side, made code to

1. Take diagram input and reduce products of gamma functions using

γαγβ = gαβ − iϵαβσγσ

It also has to simplify terms, perform contractions, and deal with epsilon tensors!
2. Trace over the integrand to separate factors proportional to 1 and γµ

3. Implement the Gordon identities to contract legs with terms

w̄1γ
µw2 = #(#µ − ϵµνρ#ν#ρ)w̄1w2

4. Collect the expression into sums of terms proportional to known master integrals

13 / 18



our research: analytic problems

On the analytic side

1. Solve the integrals, typically using Feynman parameters

2. Some integrals were IR divergent. To regularize, we used dimensional regularization.
Computing full integral in dimension d is hard, so we first found leading divergent
part, computed it, subtracted it from the full integrand, and then set d = 3.

3 ∼ (d − 3) 7 ∼ (d − 3)k

3. For the box diagrams we cannot solve the integrals with Feynman parameters, we
trade them for a (double) Mellin-Barnes integral

1
(X + Y)λ

=
1

Γ(λ)

1
2πi

∫ +i∞

−i∞
dzΓ(λ+ z)Γ(−z) Yz

Xλ+z
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our research: analytic problems

4. Completed computation of anomalous magnetic moment and bubble diagram.
5. Checked that these diagrams satisfy the Ward identities imposed by gauge

invariance (which had hundreds of terms).

× qµ = 0
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conclusion



wrap-up and future directions

SUMMARY:

◦ Wrote general software to assist scattering calculations to any order, that can deal
with epsilons.

◦ Solved hard integrals.
◦ Regularized hard integrals.

FUTURE DIRECTIONS:

◦ Finish the box integrals
◦ Combine all the expressions
◦ Test crossing symmetry

17 / 18



wrap-up and future directions

SUMMARY:

◦ Wrote general software to assist scattering calculations to any order, that can deal
with epsilons.

◦ Solved hard integrals.
◦ Regularized hard integrals.

FUTURE DIRECTIONS:

◦ Finish the box integrals
◦ Combine all the expressions
◦ Test crossing symmetry

17 / 18




	Introduction
	Chern-Simons Theory
	Chern-Simons Matter Theories
	S-Matrix

	The Project
	Literature
	Our Research

	Conclusion

