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Introduction



Motivation

Given a theory T with discrete abelian global G symmetry,
what happens if we promote G to a local symmetry?

I What does the new theory T//G look like?
I Ex. Gauging global Z2-symmetry of the high temperature Ising
model produces low temperature Ising model.
Kramers-Wannier Duality.

This operation is also known as orbifolding T by G.

Can we even gauge a G symmetry in the �rst place?
I Obstructions are so-called ’t Hooft anomalies.
I Intimately related to Wess-Zumino consistency conditions
and Chern-Simons actions.
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Motivation

Given a discrete abelian group F there are a huge number of
theories which have a global F symmetry.

I Given a particular theory T we can generate a collection by
orbifolding various subgroups G ≤ F.

I This collection does not depend on the speci�cs of T. Only G,
F, and potential obstructions.

What does this collection look like?
Z2 Theories Z5 × Z5 Theories

Gauge

Gauge Z5

Gauge
Z5?

Gauge
Z5??

What controls the structure?
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Orbifolds and Anomalies



Orbifolds

The partition function for a CFT on a torus is

Z = TrH

(
qL0−

c
24 q̄L̄0−

c̄
24
)

(1)

If we have abelian symmetry G, we restrict our space of
states H 7→ PGH by projecting onto G-invariant states.

I Like restricting to gauge invariant states in a gauge theory.

However, we must now trace over all twisted sectors, where
the �elds have “G-trivial” monodromy

φtw.
(
e2πiz, e−2πiz̄

)
= h ◦ φtw.(z, z̄) (2)

I These twisted sectors must be included for a consistent CFT.
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Gauging

Generally, for an orbifold with abelian symmetry G

Z =
1
|G|
∑
g,h

TrHh

(
gqL0−

c
24 q̄L̄0−

c̄
24
)

=:
1
|G|
∑
g,h
Zg,h (3)

In language of gauging, we write ZT[M,A] for the partition
function of T with background G gauge �eld A. Then

ZT//G[M,B] ∝
∑
A
ei(B,A)ZT[M,A] (4)

is the partition function of the gauged theory, with
background Ĝ gauge �eld B.

I The gauged theory has a Ĝ symmetry which could be gauged
next!
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Anomalies

An ’t Hooft anomaly arises if we cannot make a global
G-symmetry local and couple it to a gauge-�eld in a gauge
invariant way.

I When G is connected, Wess-Zumino conditions imply
anomalies in d dimensions are classi�ed by d+ 1
dimensional Chern-Simons actions. Anomaly In�ow.

If G is �nite we make anomaly in�ow assumption: can place
a d+ 1 dimensional topological action on boundary so that
total system is anomaly free.

I Dijkgraaf-Witten actions, classi�ed by Hd+1(G;U(1))

Result is we can only gauge a 2d theory with �nite abelian
symmetry G if a certain G-controlled cohomology class
[ω] ∈ H3(G;U(1)) vanishes.

I If it does then there are many inequivalent ways to gauge
controlled by choice of [α] ∈ H2(G;U(1)).
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SPT

Symmetry protected topological phases are gapped phases
of matter with G-symmetry which can be deformed to the
trivial state without phase transition i� G-symmetry is
broken.

I d+ 1-dimensional SPT classi�ed* by Hd+1(G;U(1)).
The boundaries of SPT phases either break G-symmetry or
carry an ’t Hooft anomaly.

I i.e. d-dim anomalous theory can be realized as a boundary
for SPT phase in d+ 1.

I If anomaly depends on d-dimensional �elds, anomaly in�ow
cannot be cancelled by DW action. SET phase?
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The Problem



The Operations

Suppose we have a 2d theory T with G = Zp × Zp symmetry.
We does the collection of orbifolds constructed from this
theory look like?
What are the operations we can perform on T?

Weak Transformations
I “Change of Basis” for the group. Generators for
automorphism group of G.

π1 : Zα,α′;β,β′ 7→ Zα,α+α′;β,β+β′ (5)
π2 : Zα,α′;β,β′ 7→ Zα′,α;β′,β (6)

I “Adding an SPT Phase” ωf(g,h) ∈ H2(G;U(1))

S : Zα,α′;β,β′ 7→ ωαβ
′−βα′

Zα,α′;β,β′ (7)

Strong Transformations (Change Dynamics)
I Gauge a Zp subgroup

g : Zα,α′;β,β′ 7→ 1
|G|
∑
γ,δ

ωαδ−βγZγ,α′;δ,β′ (8)
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The Space of Orbifolds

De�ne the set of weak transformations T0 = 〈π1, π2, S〉 and
T = 〈π1, π2, S,g〉
What are the groups T and T0?

Is there a geometrical interpretation of these operators?
What does the space of orbifolds constructed from a theory
look like?

I Two theories will be identi�ed if they are in the same T0 orbit.
I Two theories are related by orbifolding if their orbits under T
are not disjoint.

Computationally, we generate the T0 and T groups and see if
two cosets in T/T0 share a common element modulo
g-action.

8 19
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First Attempt

Treat a single twisted partition function Zα,α′;β,β′ as a vector
|α, α′;β, β′〉 in a p4 dimensional vector space over Zp.
Our operations are p4 × p4-dimensional matrices.

S
∣∣α, α′;β, β′〉 = ωαβ

′−α′β
∣∣α, α′;β, β′〉 (9)

π1
∣∣α, α′;β, β′〉 =

∣∣α, α + α′;β, β + β′
〉

(10)
π2
∣∣α, α′;β, β′〉 =

∣∣α′, α;β′, β
〉

(11)

Phases do not “see” the kets. The operators do not
commute, but since p is prime every |α, α′;β, β′〉 can be
appended with ωk for 0 ≤ k < p.

T0 ∼= Zp × SL±(2,Zp) (12)
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Topological Field Theory



Topological Field Theory Primer

Σ× [0, 1]

Ze2 Dirichlet Zm2 Dirichlet

Consider 3d Z2 gauge theory on a slab M = Σ× [0, 1].

Two line operators, Wilson (e) and ’t Hooft (m).

= −1 ×

e m e m
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2d Boundary Conditions

3d topological gauge theory on M associates H3dΣ to Σ.
I A cycle a ∈ H1(Σ,Z2) can be labelled with a Wilson Le(a) or ’t
Hooft Lm(a) line.

Place Dirichlet Ze2 boundary conditions Σ and Dirichlet Zm2
boundary conditions (Neumann Ze2) on −Σ.

I If Σ is equipped with Dirichlet Ze2 boundary conditions given
by v ∈ H1(Σ,Z2), this creates a state for the 3d theory |e, v〉.

I Similarly for −Σ with |m,w〉, the basis diagonalizing the ’t
Hooft magnetic line operators.

Le(a) |e, v〉 = (−1)
∫
a∧v |e, v〉 (13)

Lm(b) |m,w〉 = (−1)
∫
b∧w |m,w〉 . (14)

We can couple our 2d theory T with G = Ze2 symmetry to Σ,
and gauge. The partition function can be read o�∑

v
ZT[Σ, v] 〈e, v|m,w〉 =

∑
v
ei(w,v)ZT[Σ, v] = ZT//Ze2 [Σ,w]

(15)
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The Solution

We can interpret our 2d theories as boundary conditions for
a 3d topological theory. In particular

T[0, 1]Dir = T (16)

T[0, 1]Neu = T//G (17)

Complicated math tells us: Symmetries of 3d TFTs are
Brauer-Picard groups.
Also, for a �nite abelian group A

BrPic(VecA) ∼= O(A⊕ Â,q) (18)

where O(A⊕ Â,q) are automorphisms of A⊕ Â preserving the
canonical quadratic form.

I In other words, T = 〈g, S, π1, π2〉 ∼= O(2, 2;Zp).
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The Solution

This also gives more insightful basis. Obtained by simply
Fourier transforming one of the copies of G in our basis

|(A,B), (C,D)〉? =
∑

X,Y∈Zp

q((X, Y), (C,D)) |A,B; X, Y〉 . (19)

Now group operations send partition functions to partition
functions. Not (weighted) linear combinations of them. They
all act as 4× 4 matrices on the indices now.

g |(A,B), (C,D)〉? = |(C,B), (A,D)〉? (20)
S |(A,B), (C,D)〉? = |(B,A), (D, C)〉? (21)
π1 |(A,B), (C,D)〉? = |(A,A+ B), (C − D,D)〉? (22)
π2 |(A,B), (C,D)〉? = |(A,B), (C − B,D+ A)〉? . (23)

This gives a more tractable basis for computation.
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Some Plots: Z2 × Z2

2 × 2

Figure: |T0| = 12, |T| = 72. 6 orbifolds.
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Some Plots: Z3 × Z3

3 × 3

Figure: |T0| = 144, |T| = 1152. 8 orbifolds.
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Some Plots: Z5 × Z5

5 × 5

Figure: |T0| = 1200, |T| = 14, 400. 12 orbifolds.
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Some Plots: Z7 × Z7

7 × 7

Figure: |T0| = 4704, |T| = 225, 792. 48 orbifolds.
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Conclusion

Introduced orbifolding, ’t Hooft anomalies, and SPT phases.
Tried to understand the structure of orbifolds made from a
theory.

I Structure does not depend on theory, only on group and
relevant anomalies.

Introduced some notions from topological �eld theory to
give a 3d interpretation to our 2d problem.
Discovered for G = Zp × Zp

I T0 = 〈π1, π2, S〉 ∼= Zp × SL±(2,Zp).
I T = O(2, 2;Zp).
I The space of orbifolds forms a bipartite graph.
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Future Research

The next step (for next Monday!) is to extend this to theories of
fermions.

Don’t know if there are results in the literature describing a
way to �nd such a natural basis.
SPT phases for fermions are described by
“supercohomology” not regular group cohomology.
Spin structures are a�ne Z2 gauge theories. Can add a Z2
connection to a spin structure but not vice-versa.
Interesting connections to GSO projection, Jordan-Wigner
transformation of Ising model, etc.
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To be continued...
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Introduced orbifolding, ’t Hooft anomalies, and SPT phases.
Tried to understand the structure of orbifolds made from a
theory.

I Structure does not depend on theory, only on group and
relevant anomalies.

Introduced some notions from topological �eld theory to
give a 3d interpretation to our 2d problem.
Discovered for G = Zp × Zp
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Fermions TBD.


	Introduction
	Orbifolds and Anomalies
	The Problem
	Topological Field Theory
	Conclusion
	Appendix

