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INTRODUCTION




MOTIVATION

m Given a theory T with discrete abelian global G symmetry,
what happens if we promote G to a local symmetry?

» What does the new theory T//G look like?

» Ex. Gauging global Z,-symmetry of the high temperature Ising
model produces low temperature Ising model.
Kramers-Wannier Duality.

m This operation is also known as orbifolding T by G.
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» What does the new theory T//G look like?

» Ex. Gauging global Z,-symmetry of the high temperature Ising
model produces low temperature Ising model.
Kramers-Wannier Duality.

m This operation is also known as orbifolding T by G.
m Can we even gauge a G symmetry in the first place?
» Obstructions are so-called 't Hooft anomalies.

» Intimately related to Wess-Zumino consistency conditions
and Chern-Simons actions.
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MOTIVATION

m Given a discrete abelian group F there are a huge number of

theories which have a global F symmetry.

» Given a particular theory T we can generate a collection by
orbifolding various subgroups G < F.

m What does this collection look like?

» This collection does not depend on the specifics of T. Only G,

F, and potential obstructions.

Z, Theories

Gauge
o—o

m What controls the structure?

Zs x Zs Theories
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ORBIFOLDS

m The partition function for a CFT on a torus is

~

Z = Try (qLO*iqfrz—%) (1

m If we have abelian symmetry G, we restrict our space of
states H — PgH by projecting onto G-invariant states.

» Like restricting to gauge invariant states in a gauge theory.




ORBIFOLDS

m The partition function for a CFT on a torus is

~

Z = Try (qLO*inO*%) (1
m If we have abelian symmetry G, we restrict our space of

states H — PgH by projecting onto G-invariant states.
» Like restricting to gauge invariant states in a gauge theory.

m However, we must now trace over all twisted sectors, where
the fields have “G-trivial” monodromy

Prw. (ez”’z, e‘”’?) = ho ¢w.(z,2) (2)
» These twisted sectors must be included for a consistent CFT.
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m Generally, for an orbifold with abelian symmetry G

ZT% 9q g ) = =3 Zgn ()
~ Ja] 161 57




GAUGING

m Generally, for an orbifold with abelian symmetry G

_ ! lo-falo-£) _. 1
Z—,G%;Tmh (gq «q 4) =: ,Géhjzg,h (3)

m In language of gauging, we write Zr[M, A] for the partition
function of T with background G gauge field A. Then

Z1//6IM,B] o Y BN 27 [M, A] («)
A

is the partitign function of the gauged theory, with
background G gauge field B.

» The gauged theory has a G symmetry which could be gauged
next!



ANOMALIES

m An 't Hooft anomaly arises if we cannot make a global
G-symmetry local and couple it to a gauge-field in a gauge
invariant way.

» When G is connected, Wess-Zumino conditions imply
anomalies in d dimensions are classified by d + 1
dimensional Chern-Simons actions. Anomaly Inflow.
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ANOMALIES

m An 't Hooft anomaly arises if we cannot make a global
G-symmetry local and couple it to a gauge-field in a gauge
invariant way.

» When G is connected, Wess-Zumino conditions imply
anomalies in d dimensions are classified by d + 1
dimensional Chern-Simons actions. Anomaly Inflow.

m If G is finite we make anomaly inflow assumption: can place
a d + 1 dimensional topological action on boundary so that
total system is anomaly free.

» Dijkgraaf-Witten actions, classified by H*(G; U(1))

m Result is we can only gauge a 2d theory with finite abelian
symmetry G if a certain G-controlled cohomology class
[w] € H3(G; U(1)) vanishes.

» If it does then there are many inequivalent ways to gauge
controlled by choice of [a] € H?(G; U(1)).




m Symmetry protected topological phases are gapped phases
of matter with G-symmetry which can be deformed to the
trivial state without phase transition iff G-symmetry is
broken.

» d + 1-dimensional SPT classified* by H+'(G; U(1)).

m The boundaries of SPT phases either break G-symmetry or
carry an 't Hooft anomaly.

» i.e. d-dim anomalous theory can be realized as a boundary
for SPT phase in d + 1.

» If anomaly depends on d-dimensional fields, anomaly inflow
cannot be cancelled by DW action. SET phase?
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We does the collection of orbifolds constructed from this
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m Weak Transformations

» “Change of Basis” for the group. Generators for
automorphism group of G.
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THE OPERATIONS

m Suppose we have a 2d theory T with G = Z, x Z, symmetry.
We does the collection of orbifolds constructed from this
theory look like?

m What are the operations we can perform on T?

m Weak Transformations

» “Change of Basis” for the group. Generators for
automorphism group of G.

T Za,anip,pr  Za,ataliB,B+B (5)
T2 Zaarippr = Zot cpr (6)

» “Adding an SPT Phase” /(9N e H2(G; U(1))
S: Zawipp = w? P Z, s (7)

m Strong Transformations (Change Dynamics)
» Gauge a Zp subgroup

1 _
g: Z%U/?ﬂ»ﬁ’ = ZWQ& ﬁﬂyz'y,(x’;é,[i’ (8)
v,6
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» Two theories will be identified if they are in the same T, orbit.
» Two theories are related by orbifolding if their orbits under T
are not disjoint.




THE SPACE OF ORBIFOLDS

m Define the set of weak transformations T = (4, 75, S) and
T= <7T1>7T2a Sv g>
m What are the groups T and Ty?
m Is there a geometrical interpretation of these operators?
m What does the space of orbifolds constructed from a theory
look like?
» Two theories will be identified if they are in the same T, orbit.
» Two theories are related by orbifolding if their orbits under T
are not disjoint.
m Computationally, we generate the T, and T groups and see if
two cosets in T/T, share a common element modulo
g-action.




FIRST ATTEMPT

m Treat a single twisted partition function Z, .3 3 as a vector
la,0’; 8, 6) in a p* dimensional vector space over Z.

m Our operations are p* x p“-dimensional matrices.
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FIRST ATTEMPT

m Treat a single twisted partition function Z, .3 3 as a vector
la,0’; 8, 6) in a p* dimensional vector space over Z.

m Our operations are p* x p“-dimensional matrices.

S|a,o'; B,8') = w =% |a,0; B, 8") (9)
T oz,o/;,B,B/> - |O[,Oé+0/;ﬁ7ﬁ+ﬁ,> (10)
T2 aua/;ﬁ76,> - ‘O/,Oé;ﬁ/,ﬁ> (11)

m Phases do not “see” the kets. The operators do not
commute, but since p is prime every |a, o'; 8, 5') can be
appended with wk foro < k < p.

To & Zp x SLi(2,Zp) (12)
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TOPOLOGICAL FIELD THEORY PRIMER

Y x [0,1]

. . /\)\ . .
75 Dirichlet d — 7. Dirichlet

m Consider 3d Z, gauge theory onaslabM =¥ x [0, 1].
m Two line operators, Wilson (e) and 't Hooft (m).
m e

N /

/m
\3




2d BOUNDARY CONDITIONS

m 3d topological gauge theory on M associates ?—L%d to X.
» Acycle a € Hy(X,Z,) can be labelled with a Wilson L.(a) or 't
Hooft Lm(a) line.
m Place Dirichlet Z$ boundary conditions X and Dirichlet ZJ'
boundary conditions (Neumann Z¢) on —%.
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» Acycle a € Hy(X,Z,) can be labelled with a Wilson L.(a) or 't
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» If X is equipped with Dirichlet Z¢ boundary conditions given
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2d BOUNDARY CONDITIONS

m 3d topological gauge theory on M associates ?—L%d to X.
» Acycle a € Hy(X,Z,) can be labelled with a Wilson L.(a) or 't
Hooft Lm(a) line.
m Place Dirichlet Z$ boundary conditions X and Dirichlet ZJ'
boundary conditions (Neumann Z¢) on —%.
» If X is equipped with Dirichlet Z¢ boundary conditions given
by v € H,(X, Z,), this creates a state for the 3d theory |e, v).
» Similarly for —% with |m, w), the basis diagonalizing the 't
Hooft magnetic line operators.
Le(Cl) ‘ev V> = (_1)IOAV |e7 V> (13)
Lm(b) [m,w) = (=1)/ 2" |m, w). (1)

m We can couple our 2d theory T with G = Z§ symmetry to ¥,
and gauge. The partition function can be read off

Z ZT[Z, V] <e7 V‘m, W> — Z ei(W’V)ZT[Za V] - ZT//Z% [Za W]
v v

(15)
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THE SOLUTION

m We can interpret our 2d theories as boundary conditions for
a 3d topological theory. In particular

70, pir =T (16)

T[O> Nneu =T//G (17)

m Complicated math tells us: Symmetries of 3d TFTs are
Brauer-Picard groups.

m Also, for a finite abelian group A
BrPic(Vecy) = O(A & A, q) (18)

where O(A @ A, q) are automorphisms of A & A preserving the
canonical quadratic form.

» In other words, T = (g, S, m, m) = 0(2,2; Zp).




THE SOLUTION

m This also gives more insightful basis. Obtained by simply
Fourier transforming one of the copies of G in our basis

(A,B),(C,D)), = > q((X,Y),(C,D))|A,B;X,Y).  (19)
X,YEZp




THE SOLUTION

m This also gives more insightful basis. Obtained by simply
Fourier transforming one of the copies of G in our basis

(A,B),(C,D)), = > q((X,Y),(C,D))|A,B;X,Y).  (19)
X,YEZp

m Now group operations send partition functions to partition
functions. Not (weighted) linear combinations of them. They
all act as 4 x 4 matrices on the indices now.

(A, B),(C, D)), = I(C,B), (A, D)), (20)
S|(A,B),(C, D)), = [(B,A), (D, C)), (21)
m|(A,B),(C,D)), = |(A,A+B),(C—D,D)), (22)
2|(A,B),(C,D)), = |(A,B),(C~B,D+A)), .  (23)

m This gives a more tractable basis for computation.




SOME PLOTS: Z, X Zs

Zy X Z9

Figure: |To| = 12, |T| = 72. 6 orbifolds.




SOME PLOTS: Z3 x Zs

Z3 X Z3

=

Figure: |To| = 144, |T| = 1152. 8 orbifolds.




Zg X Zg

1200, |T| = 14, 400. 12 orbifolds.
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SOME PLOTS: Z; X Z;

Ni‘nnnnu&““?’

Figure:

To| = 4704, |T| = 225,792. 48 orbifolds.
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CONCLUSION

m Introduced orbifolding, 't Hooft anomalies, and SPT phases.
m Tried to understand the structure of orbifolds made from a
theory.
» Structure does not depend on theory, only on group and
relevant anomalies.
m Introduced some notions from topological field theory to
give a 3d interpretation to our 2d problem.
m Discovered for G = Z, x Zy
> TO — <7T177T235> = ZP X SLZ‘Z(z’ZP)‘
» T=0(2,2;Zp).
» The space of orbifolds forms a bipartite graph.




FUTURE RESEARCH

The next step (for next Monday!) is to extend this to theories of
fermions.

m Don't know if there are results in the literature describing a
way to find such a natural basis.

m SPT phases for fermions are described by
“supercohomology” not regular group cohomology.

m Spin structures are affine Z, gauge theories. Can add a Z,
connection to a spin structure but not vice-versa.

m Interesting connections to GSO projection, Jordan-Wigner
transformation of Ising model, etc.



TO BE CONTINUED...



CONCLUSION

m Introduced orbifolding, 't Hooft anomalies, and SPT phases.

m Tried to understand the structure of orbifolds made from a
theory.
» Structure does not depend on theory, only on group and
relevant anomalies.
m Introduced some notions from topological field theory to
give a 3d interpretation to our 2d problem.
m Discovered for G = Zp x Zp
> To = (my,m,S) = Zp x SL1(2,7Zp).
» T=0(2,2;Zp).
» The space of orbifolds forms a bipartite graph.
m Fermions TBD.
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