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Introduction



Introduction: Why Defects?

Defects are everywhere in physics.
I Extended operators: lines, surfaces, ...
I Understanding boundaries and interfaces of QFTs tells us

about the theory itself. RG flows, dualities, ...

In past few years, focusing on Topological Defect Lines
modeled by Fusion Categories has been extremely
profitable. Even just focusing on 2d we have
I Modeling statistical systems with inhomogeneities [2008.08598]

I Constraints for RG flows, generalizes ’t Hooft anomaly
matching, etc. [1802.04445], [2008.05960], [2008.07567]

I Constraints for modular bootstrap [1904.04833], [2004.12557]

I Clarifying fermionization and orbifold relationships between
theories [1909.01425]

I Constraints for quantum gravity [2006.10052]

Before getting into that, we need a model organism...
2 33



Introduction: Symmetry Defects 1/2

Symmetry Defects are the model topological defect.
Suppose we have a theory with (0-form) global symmetry
group G.
I For every g ∈ G, define Ug(M (d−1)) by cutting spacetime along

the codim. 1 manifold M (d−1) and inserting the appropriate
g-action in the complete set of states associated with M (d−1).

Ug(M
(d−1))Uh(M (d−1)) = Ugh(M (d−1)) (1)

I Ward identities imply we may freely deform the supports of
Ug but must be careful when moving past another charged
operator.

Symmetry defects are invertible.
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Introduction: Symmetry Defects 2/2

Thus, in 2d: each element g ∈ G gives an invertible
topological defect line Ug
I They fuse naturally: Ug ⊗ Uh = Ugh

I They are invertible: Ug ⊗ Ug−1 = U1.
I If it passes over a local operator insertion O, it acts

appropriately

O
Ug ⇒ g · O

Ug

From here out, we will focus on topological defect lines in 2d
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Introduction: Non-Invertible Defects

There are also non-invertible defects.
I For example, if you have a Z2 symmetry, define the operator

P = U0 ⊕ U1 by

〈· · · (U0 ⊕ U1)(γ) · · · 〉 = 〈· · ·U0(γ) · · · 〉+ 〈· · ·U1(γ) · · · 〉 (2)

I Such an operator must be non-invertible because “it loses
information.” i.e. it projects out Z2 charged operators.

O
P ⇒ (1 + (−1)q)O

P

Goal for Today
Describe an interesting species of non-invertible TDLs in 2d CFTs
known as duality defects or Tambara-Yamagami lines.
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Introduction: The Plan

Question: What is a duality defect and how do I find them?

Plan:
1. Introduce two basic fusion categories by showing pictures of

TDLs and what phenomena they capture.
2. Describe how topological defects act in 2d CFT, and look at a

special class called Verlinde line defects.
3. Look at the Ising CFT and understand its duality defect line

in detail. Try to give a physical picture of how it explains
important properties of the Ising CFT.

4. Briefly introduce the chiral E8 theory, and attempt to study
its duality defects.

5. Explain what’s left to do (if anything) with understanding
duality defects in the chiral E8 theory.
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Two Important Fusion Categories



Fusion Categories: Generalities 1/2

Fusion categories are categories where the objects are TDLs,
subject to consistency axioms we’d expect for 2d lines.
I e.g. if two lines come su�ciently close together with the

same orientation they fuse
I e.g. rules for multiple fusions and pentagon identity

Xa Xb Xc

(Xa ⊗Xb)⊗Xc

= α(Xa, Xb, Xc)

XcXbXa

Xa ⊗ (Xb ⊗Xc)
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Fusion Categories: Generalities 2/2

All-in-all, to talk about a fusion category, we need:
1. The (finite) list of simple objects {a, b, c, . . . }
2. How the simple objects fuse Na

bc

3. Associator data α(a, b, c) (or F -symbols)

A finite number of simple lines is important!
I As a non-example, consider a theory with U(1) symmetry,

then there is a continuous family of invertible symmetry lines
labelled by θ, defined by the contour integral eiθ

∫
γ
dsµjµ .

This makes fusion categories more of a generalization of
finite groups rather than arbitrary groups
I This finiteness leads to “Ocneanu rigidity” which says you

can’t continuously deform fusion categories to others, and is
why they put constraints on RG flows and generalize ’t Hooft
anomaly matching.

8 33



Fusion Categories: G-Graded Vector Spaces

Given a finite group G, the topological defects associated to
the group G form a fusion category in a natural way:

1. Simple objects are elements of G.
2. Fusion rules are just group composition Na

g,h = δa,gh
3. The associator is given by some α ∈ H3(G,U(1))

Ug Uh Uk

(Ug ⊗ Uh)⊗ Uk

= α(g, h, k)

UkUhUg

Ug ⊗ (Uh ⊗ Uk)

I This gives the fusion category mathematicians call VecαG
I In physics language, α is the anomaly for the G symmetry, the

ambiguity in coupling to a background G connection.
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Fusion Categories: TY Categories

TY Categories are categorifications of the fusion algebra of
an abelian group A extended by one additional object N .
The data are as follows:

1. The simple objects are A ∪ {N}
2. The fusion rules are the same as VecA but also

XN ⊗Xa = Xa ⊗XN = XN , XN ⊗XN =
⊕
a∈A

Xa (3)

3. The (non-identity) associators are

αa,N ,b = χ(a, b)1N , (4)

αN ,a,N =
⊕
b

χ(a, b)1b , (5)

αN ,N ,N = (τχ(a, b)−11N )a,b . (6)

Mathematicians call this TY(A,χ, τ).
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CFT and Partition Functions



CFT: Defining a Defect Concretely (Plane)

Since a defect line is an inhomogeneity in our system, we
must specify boundary conditions for fields on either side of
the defect line.
I Focusing on 2d CFT, we describe how a defect line acts on

states of the Hilbert space H.

In the plane, a defect line X defines an operator X̂ on the
Hilbert space of states on a circle H as follows:
I Place φ ∈ H at the origin
I Place the defect X on the unit circle
I This defines the state X̂φ ∈ H

X is topological if X̂ commutes with the stress tensor

[L̂n, X̂] = 0 = [ ˆ̄Ln, X̂] (7)
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CFT: Defining a Defect Concretely (Cylinder)

Said more cylindrically, prepare φ in the infinite past and
have X waiting for it half-way up the cylinder, then the out
state is X̂φ.

X X

The Hilbert space HX of operators upon which X can end is
the Hilbert space of the theory on a circle, except with a
single future oriented X defect piercing the circle.
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CFT: Defect Partition Functions

X X

Partition function with X-twist in Euclidean time

ZX(τ, τ̄) = TrH X̂q
L0− c

24 q̄L̄0− c
24 , (8)

Partition function with X-twist in space

ZX(τ, τ̄) = TrHX q
L0− c

24 q̄L̄0− c
24 . (9)
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CFT: Verlinde Line Defects

If we are working with a diagonal RCFT, we can define a class
of TDLs, called Verlinde Lines, which commute with the
entire chiral algebra A
I In one-to-one correspondence with primaries
I Act as

X̂i |φj〉 =
Sij
S0j
|φj〉 , (10)

I Fuse as
Xi ⊗Xj =

⊕
k

Nk
ijXk . (11)

Natural consequence of the bulk-boundary relationship
between a 2d RCFT and its associated 3d TFT
I Topological defects coming from anyons of bulk 3d TFT,

brought to boundary where 2d RCFT data lives
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CFT: Verlinde Lines and TFT

Consider a WZW model on Σ. This is equivalent to 3d CS on
an interval Σ× [0, 2], with chiral and anti-chiral boundary
conditions on the ends.
I For non-trivial modular invariant, we insert a non-trivial

surface operator that “glues” the information from chiral
algebra A to local piece from anti-chiral algebra Ā.

I Explains why Verlinde lines have same fusion rule as
operators

×

HΣ H∗Σ

Σ× [0, 2]

i j
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The Ising CFT



Ising: The Setup

Consider the 2d c = 1
2 Ising model. It has 3 Virasoro primaries

10,0, ε 1
2
, 1
2
, σ 1

16
, 1
16

(12)

I The fusion rules are

[σ][σ] = [1]⊕ [ε] , [σ][ε] = [σ] , [ε][ε] = [1] . (13)

This also means it has 3 Verlinde lines, X1, Xε, and Xσ.
I These turn out to be all the TDLs of the Ising
I They act on states by

10,0 ε 1
2
, 1
2

σ 1
16
, 1
16

X1 1 1 1
Xε 1 1 −1

Xσ

√
2 −

√
2 0
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Ising: It has Z2 Symmetry

The Ising model has a Z2 symmetry. Clearly X1 is the
identity, and Xε is the Z2 symmetry line. Xε acts non-trivially
on the Z2 charged operators (σ 1

16
, 1
16

, ψ 1
2
,0, ψ̄0, 1

2
, . . . )

I We have the usual Hilbert space of local operators H. Think
of as the endpoint operators for the trivial line X1.

H1 = span{10,0, ε 1
2
, 1
2
, σ 1

16
, 1
16
} . (14)

I We also have the Hilbert space of twist operators which have
to have an Xε topological tail.

Hε = span{µ 1
16
, 1
16
, ψ 1

2
,0, ψ̄0, 1

2
} . (15)

In the statistical model, the Z2 symmetry line Xε is called a
“line of frustration,” and µ is called the “disorder operator.”
I Famously, in the (not necessarily critical) Ising model,
〈σ(z1) · · ·σ(zn)〉β = 〈µ(z1) · · ·µ(zn)〉β̃ . But why?
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Ising: What is Xσ?

A statistical interpretation of the Xσ line is not immediately
clear, but can be realized by studying how it acts on the
primaries in the CFT picture.

Sweeping Xσ past a σ insertion, we are left with a µ insertion
and a topological Xε tail.

Sweeping Xσ past an ε insertion, it leaves behind −ε.

σ
Xσ

=
µ

Xε
Xσ

Xσ
ε

Xσ
= −ε

Xσ
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Ising: Xσ is a Duality Defect!

Xσ is a duality defect!
I Perhaps we noticed that from the fusion rules

[σ][σ] = [1]⊕ [ε] , [σ][ε] = [σ] , [ε][ε] = [1] . (16)

First note that it relates correlators of order operators to
disorder operators at the critical point.
I For example, on the sphere

I So 〈σ(z1) · · ·σ(zn)〉βc = 〈µ(z1) · · ·µ(zn)〉βc
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Ising: KW Duality and Orbifolds

Similarly, on the torus

I The KW defect separates the Ising from its orbifold.
The action on ε also explains why Kramers-Wannier duality is
true for all temperatures.
I ε is relevant in the Ising CFT, flows the Ising to high

temperature or low temperature phases.
I Since Xσ changes the sign of ε then relations hold like〈

σ(x)σ(x′)e−λ
∫
ε(y)d2y

〉
=
〈
µ(x)µ(x′)e+λ

∫
ε(y)d2y

〉
(17)
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Ising: The Defected Partition Function

Suppose I want to know the defected partition function

ZXσ(τ, τ̄) = TrH X̂σq
L0− 1

48 q̄L̄0− 1
48 , (18)

=
∑
i

Siσ
S0σ

χi(τ)χ̄i(τ̄) , (19)

=
√

2|χ0|2 −
√

2|χ 1
2
|2 . (20)

Could I have guessed this without knowing about Verlinde
lines?
I No. But I can get close using Xσ ⊗Xσ = X1 ⊕Xε.
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Recap and Reorientation

Recap:
1. Defects are important, they can be topological, invertible,

non-invertible, and so-on.
2. Fusion categories exist. Symmetry defects behave like VecαG,

and symmetry defects plus a “duality defect” behave like
TY(A,χ, τ).

3. The Ising model has a duality defect, which can be obtained
by looking at it’s Verlinde lines, and it describes an
isomorphism from Ising ∼= Ising//Z2.

Reorientation:
Recall our question: What is a duality defect and how do I
find them?

We now know that a duality defect is something that relates
a CFT to its orbifold, but we relied heavily on Xσ being a
Verlinde line.
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The E8 Theory



E8 Theory: It Exists and is Unique

To have a full CFT, we combine a chiral algebra A and
anti-chiral algebra Ā in some modular invariant way.
I This requires, at minimum, that cL − cR ∈ 24Z.
I Usually (but not always) we assume A = Ā and this gives us

cL − cR = 0.

If we allow ourselves to study things whose modular
non-invariance can be fixed with a (2+1)d gravitational
Chern-Simons term, then its not outrageous to look at CFTs
with cL − cR ∈ 8Z.
It turns out there is a unique holomorphic CFT with cL = 8
(and cR = 0 by defn.) which I will call the chiral E8 theory.
I Since the theory is unique, it should have duality defects just

like the Ising, for every non-anomalous symmetry.
I Since the theory is holomorphic, it has no Verlinde lines! i.e

Rep(VE8
) is trivial. So we give up on finding duality defects...
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E8 Theory: What is it really though?

You can think of the chiral E8 theory as being just the chiral
algebra/VOA for the (E8)1 WZW model.
A di�erent, equivalent, characterization is as the E8 LVOA.

1. Start with the 8 dimensional E8 lattice LE8
.

2. For every vector α ∈ LE8
, you have a state |α〉 created by the

vertex operator Γα. By definition 〈α|β〉 = δαβ . Also

ΓαΓβ = ε(α, β)Γα+β (21)

3. For each root we get a free independent boson, whose modes
satisfy usual Heisenberg commutation relation

[aim, a
j
n] = mδijδm+n,0 . (22)

4. They satisfy

ain |α〉 = 0 , if n > 0, , (23)
ai0 |α〉 = αi |α〉 . (24)
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E8 Theory: Partition Function

Working with all this, we can compute the partition function

ZE8(τ) =
1

2η(τ)8

(
θ1(τ)8 + θ2(τ)8 + θ3(τ)8 + θ4(τ)8

)
(25)

This is just the partition function for (the GSO projection of)
a theory of 16 chiral fermions.
Moreover, the Ising CFT is just (the GSO projection of) a free
(non-chiral) fermion
ZIsing(τ, τ̄) =

1

2|η(τ)|
(|θ1(τ)|+ |θ2(τ)|+ |θ3(τ)|+ |θ4(τ)|) (26)
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Secret Fermion Interlude: Dual Symmetry

By now, people know if you have a fermionic theory Tf with
(−1)F symmetry (and cL − cR ∈ 8Z), then you can gauge the
diagonal spin-structure (in two di�erent ways) to produce
bosonic theories with a non-anomalous Z2 symmetry.
I The (−1)F symmetry defect in the fermionic theory becomes

a the Z2 symmetry defect in the bosonic theory

What happens to the chiral fermion parity (−1)FL

I A twist by the chiral fermion parity becomes a duality defect
N in the bosonic theory!
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Secret Fermion Interlude: n Majorana Fermions

Explicitly, if we do the GSO projection of the free fermion CFT,
but insert a (−1)FL symmetry defect before GSO projecting
1

2

∑
ρ

ZMaj.[ρ1, ρ2 + 1]Z̄Maj.[ρ1, ρ2] ∝
√

2|χ0|2 −
√

2|χ 1
2
|2 . (27)

More generally, this comes from the fact that (−1)FL has one
unit of the “mod 8 anomaly” coming from

Hom(ΩSpin
3 (B Z2), U(1)) = Z8 (28)

I For n Majorana fermions the bosonization is the Spin(n)1
WZW model

I If n = 1, 7 (mod 8) you get TY(Z2, 1,+1/
√

2)

I If n = 3, 5 (mod 8) you get TY(Z2, 1,−1/
√

2)
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E8 Theory: Z2-TY Defects in E8

The chiral E8 theory is just 16 Majorana-Weyl fermions. So
we should get 4 di�erent duality defects based on if we view
it as coming from the GSO projection of

Z1
Maj.[ρ]Z15

Maj.[ρ] , Z3
Maj.[ρ]Z13

Maj.[ρ] , (29)
Z5

Maj.[ρ]Z11
Maj.[ρ] , Z7

Maj.[ρ]Z9
Maj.[ρ] . (30)

In which case there are 4 Z2 duality defects in E8

ZV [0, Xp] ∝
1

2

∑
ρ

ZpMaj.[ρ1, ρ2 + 1]Z16−p
Maj. [ρ1, ρ2] , (31)

=
(θ3(τ)θ4(τ))

p
2

2η(τ)8

(
θ3(τ)8−p + θ4(τ)8−p) . (32)
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Conclusion



Conclusion: Higher Order Symmetries 1/2

What about higher order symmetries? i.e. Zn>2.
I Maybe we can parafermionize and ask about... chiral

parafermion number? This seems too hard.

The clue to a general answer comes from when we were
trying to guess the defected partition function for the Ising.
I Think about operators of the Ising CFT relevant in Z2 orbifold

The sign di�erence for the ε 1
2
, 1
2

primary roughly came from
“the Ising and its orbifold see ε di�erently.”
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Conclusion: Higher Order Symmetries 2/2

Conjecture: Zm TY defects of V = VE8 are obtained as follows...
1. Find all non-anomalous (therefore gaugeable) Zm

symmetries of V . The uncharged operators form a sub-VOA

V Zm ⊂ V (33)

2. Zm-twisted Hilbert spaces of V decompose over Irr(V Zm).

[V/Zm] [V/Zm]1 · · · [V/Zm]m−1

V H0
0 H1

0 · · · Hm−1
0

V1 H0
1 H1

1 · · · Hm−1
1

...
...

... . . . ...
Vm−1 H0

m−1 H1
m−1 · · · Hm−1

m−1

3. Find order two automorphisms of V Zm which “swap the
axes” corresponding to V and its orbifold in the table.
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Conclusion: What We’re Doing Now

In terms of partition functions, the claim is that duality
defected partition functions can be computed as

ZV [0,N ] = trV Zm (σ̂qL0− c
24 ) (34)

We’ve tested this for Z2 duality defects in the chiral E8

theory. We are working on testing this explicitly for the Z3

duality defects.
I Obstruction: this involves computing twisted theta functions

for lattices like E6 and F4 and reducing it to sums/products
of regular theta functions. This is hard!
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Conclusion: Recap

Recap:
1. Defects are important, they can be topological, invertible,

non-invertible, and so-on.
2. Well behaved finite collections of TDLs are captured by

fusion categories. They put constraints on RG and explain
dualities.

3. The Ising model has a duality defect, which describes an
isomorphism from Ising ∼= Ising//Z2. It can be obtained just
by looking at Verlinde lines.

4. The chiral E8 theory should have duality defects too. You
can’t use Verlinde lines, but you can use fermionization to
get the Z2 defects.

5. For higher defects, a new trick (and a proof it gives the
desired result) will be needed.
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To be continued...
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