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Introduction: Outline and Goal of Talk

Give a survey of: path integrals; symmetry operators;
examples of topological data in QFT; and toric code.
Goals:

1. Describe vaguely what a path integral is.
2. Show how symmetries correspond to invertible codimension

1 operators with topological support.
Bonus. Illustrate how we can blow up a (1+1)d theory to a (2+1)d

gauge theory sandwich.

Key Words:
Axiomatic QFT; non-Lagrangian theories; topological field theory;
anomalies; higher-form symmetries; categorical symmetries; SPT
phases; cobordism; toric code; topological order; Chern-Simons
theory; electric-magnetic duality; boundary conditions of gauge
theory; orbifold
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Path Integral



Path Integral: Basics

To describe a d-dim Quantum Field Theory (QFT), we might
start with the following data
I A d-dim manifold Md with a space of fields collectively

denoted Φ. e.g. fields can be R-val’d scalars; gauge fields;
p-forms; or maps to a “target space” Φ : Md →W .

I A local action functional S[Φ], which is the action for the
classical field theory we are quantizing.

Objects of interest are path integrals, expressions like∫
DΦ e−S[Φ] (1)

I If Md closed, integral above gives partition function Z[Md]

I If Md has boundary Md−1, then integral depends on
boundary conditions (BCs) for fields. e.g. if Φ|Md−1

= ϕ, then
we can consider functions

Ψ[ϕ] =

∫
Φ|Md−1

=ϕ
DΦ e−S[Φ] ∈ H(Md−1) (2)
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Path Integral: TFT Axioms, 〈· · ·〉, etc.

If Md has incoming and outgoing boundaries M−d−1 and M+
d−1

then the path-integral assigns a transition amplitude
between 〈ϕ−| and |ϕ+〉.

Taking these ideas to simplest and most axiomatic form
gives e.g. Atiyah-Segal axioms for topological field theory.

A d dim topological field theory is a symmetric monoidal functor

Z : Bord〈n−1,n〉 → VecC .

Correlation functions in the theory are given by

〈O1(x1) · · · On(xn)〉 =

∫
Md

DΦ O1(x1) · · · On(xn) e−S[Φ] (3)
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Symmetries



Symmetries: Noether’s Theorem

Noether’s theorem associates a current to every continuous
symmetry, which is conserved (on-shell).

For simplicity, consider a classical theory of a real scalar φ. If
δL = 0 under

φ 7→ φ′ = φ+ εδφ , (4)

then on-shell

Jµ :=
∂L

∂(∂µφ)
δφ satisfies ∂µJ

µ = 0 . (5)

There is an associated conserved charge supported on a
codimension 1 manifold Md−1 ⊂Md

Q(Md−1) :=

∫
Md−1

?J (6)
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Symmetries: Ward Identities 1/2

Consider the same transformation in the path-integral for a
correlation function (write X := φ(x1) · · ·φ(xn))
I From the point of view of the path integral, φ 7→ φ′ = φ+ εδφ

is just a change of variables, so leaves it unchanged:

〈X〉 =

∫
DφXe−S[φ] , (7)

=

∫
Dφ′X ′e−S[φ′] , (8)

=

∫
Dφ′ (X + δX)e−(S[φ]−

∫
ddx ∂µJµε(x)) . (9)

If we assume Dφ = Dφ′ and expand to first order in ε, we get

〈δX〉|O(ε) =

∫
ddx 〈∂µJµX〉 ε(x) (10)
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Symmetries: Ward Identities 2/2

Let’s look at the LHS of this equation

〈δX〉|O(ε) =

∫
ddx 〈∂µJµX〉 ε(x) (11)

I We can write

δX|O(ε) = ε

n∑
i=1

φ(x1) · · · δφ(xi) · · ·φ(xn) , (12)

=

∫
ddx ε(x)

n∑
i=1

δ(x− xi)φ(x1) · · · δφ(xi) · · ·φ(xn) .

Ward Identity

〈∂µjµ(x)φ(x1) · · ·φ(xn)〉 =

n∑
i=1

δ(x− xi)φ(x1) · · · δφ(xi) · · ·φ(xn)
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Topological Data



Topological Data: Symmetry Operators 1/2

Recall the Noether charge defined for some Md−1 ⊂Md as

Q(Md−1) :=

∫
Md−1

?J (13)

Ward identities imply that the support Md−1 is only
topologically relevant in correlation functions

We can exponentiate Q(Md−1) to get a symmetry operator
associated with a “less infinitesimal” symmetry.

Ug(Md−1) ∼ exp(iωaQ
a(Md−1)) . (14)
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Topological Data: Symmetry Operators 2/2

More generally, for every g ∈ G, define Ug(Md−1) by cutting
spacetime along Md−1 and acting with appropriate g-action
on the complete set of states associated with Md−1.
I Works for discrete G.

Operations then compose like

Ug(Md−1)Uh(Md−1) = Ugh(Md−1) (15)

Symmetry Defects

Symmetry defects are invertible topological codim 1 defects
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Topological Data: Background Flat Connections

What does a connection A do in a gauge theory? Tells us
about about things like parallel transport. Holonomies.

Our new view of symmetry operators as codimension 1
defects gives us a way to understand background flat
connections.
I Every background flat connection can be understood as a

network of defects, labelling holonomy around
non-contractible loops.

I Gauge transformations just shift the domain walls around.
I Every connection for a discrete gauge theory is flat.
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Topological Data: SPT Phases

Given a theory T with partition function ZT on Md and
symmetry group G, we can consider the theory in the
presence of a background G gauge field Z[Md;A].
When G is discrete and abelian, we call this the twisted
partition function. Connections are A ∈ H1(Md, G) labelling
holonomy around non-contractible cycles.
A G SPT Phase is a gapped phase which is indistinguishable
from trivial if one disregards symmetry.
I In presence of background G gauge field, the partition

function is a U(1) number.
I Actions classified by group cohomology or cobordism theory.
I Can “stack” these SPT phases with more typical theories to

change the topological properties of the theory.
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Topological Data: Wilson and ’t Hooft Lines

G gauge theory has an interesting set of topological
operators, called Wilson Lines; the worldline of an infinitely
massive electrically charged particle

WR(γ) = TrR P exp

(
i

∫
γ
A

)
. (16)

I Labelled by a rep R of G.

There are also ’t Hooft Lines, which correspond to worldline
of infinitely massive magnetically charged particle
I Labelled by a cocharacter µ̂ : U(1)→ G.

Also dyonic lines with both electric and magnetic charge.

Lines can braid around each other and collect phases, and
fuse into di�erent dyons.
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Example: Toric Code



Example: Toric Code - General Facts

Toric Code or (2+1)d Z2 Gauge Theory can be thought of in a
number of di�erent ways
I As Z2 lattice gauge theory: start with 2d square lattice with

spins on vertices; introduce “connection” on edges; gauge.
I Simplest example of Z2 topological order

I As U(1)2 Chern-Simons at level K =

(
0 2
2 0

)
I As (2+1)d U(1) gauge theory broken down to Z2

I As “gauged Z2 SPT theory” or Z2 Dijkgraaf-Witten theory.
We pre-highlight some key facts:

1. It has 4 lines (simple)
2. It has 2 gapped boundary conditions (bosonic)
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Example: Toric Code - Lattice 1/2

2d square lattice with
spin-1/2 DoF on each edge.

Introduce operators

Av =
∏
i∈v

σxi , Bp =
∏
i∈p

σzi .

The Hamiltonian is

H = −J
∑
v

Av − J
∑
p

Bp

The GS of Hamiltonian is

Av |ψ〉 = Bp |ψ〉 = |ψ〉
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Example: Toric Code - Lattice 2/2

Two types of gapped boundary
conditions: rough and smooth.

When e line approaches rough
boundary, it can disappear!

m line gets stuck at rough boundary!
Boundary excitations for rough
boundary are {1,m}

This also shows o� electric-magnetic duality: on the dual
lattice we have the same physics, but e and m lines switch
roles. The rough and smooth boundaries switch roles too.
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Example: Toric Code - Continuum 1/2

M3 = M2 × [0, 1]
Dynamical Z2 Connection

If e line is the Wilson Line, then we saw there is a boundary
(rough) where it can end. This is Dirichlet BC for bulk gauge
field.
I In this case, m is ’t Hooft line and is a boundary excitation.
I The smooth boundary looks like a Neumann BC for the bulk

gauge field.
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Example: Toric Code - Continuum 2/2

Write |D[A∂ ]〉 for the Dirichlet BC that sets the 3d bulk
connection to look like A∂ at the boundary.
It “““makes sense””” that a Neumann BC (free BC) is like a
sum over all Dirichlet BCs

|N〉 :=
∑

B∂∈H1(M2,Z2)

|D[B∂ ]〉 (17)

Take some (1+1)d theory T with Z2 symmetry. Make a new
enriched BC for the toric code by using A∂ as background
gauge field for T .

TBC

Connection A
Couple to A∂

T
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Example: Toric Code - 2d Dualities & 3d Bulk 1/2

The state of the (2+1)d TFT given by the T -enriched BC is

|T 〉 :=
∑
A∂

ZT [A∂ ] |D[A∂ ]〉 (18)

TBC D[B∂ ]

Connection A
Compactify

T

B∂

Equip one end of a slab with T -enriched BC (i.e. 〈T |) and the
other with Dirichlet BC |D[β∂ ]〉, then

〈T |D[β∂ ]〉 =
∑
A∂

ZT [A∂ ] 〈D[A∂ ]|D[β∂ ]〉 = ZT [B∂ ] (19)

18 20



Example: Toric Code - 2d Dualities & 3d Bulk 2/2

Use Neumann BC instead

|T 〉 :=
∑
A∂

ZT [A∂ ] |D[A∂ ]〉 (20)

TBC N

Connection A
Compactify

T

A∂

Then we get the following (1+1)d gauged partition function
from compactification instead:

〈T |N〉 ∝
∑
A∂ ,β∂

ZT [A∂ ] 〈D[A∂ ]|D[β∂ ]〉 =
∑
A∂

ZT [A∂ ] (21)
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Conclusion



Recap and Outlook

Take away slogans from today:
1. The path integral associates a number to a closed manifold

and a space of states to a boundary (or interface).
2. Symmetries correspond to invertible codimension 1

operators with topological support.
3. Boundary conditions for gauge theories have a rich structure

and can be used to probe the gauge theory or other theories.
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