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INTRODUCTION: OUTLINE AND GOAL OF TALK

m Give a survey of: path integrals; symmetry operators;
examples of topological data in QFT; and toric code.

m Goals:

1. Describe vaguely what a path integral is.
2. Show how symmetries correspond to invertible codimension
1 operators with topological support.
Bonus. Illustrate how we can blow up a (1+1)d theory to a (2+1)d
gauge theory sandwich.
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theory; orbifold




PATH INTEGRAL




PATH INTEGRAL: BASICS

m To describe a d-dim Quantum Field Theory (QFT), we might
start with the following data
> A d-dim manifold M, with a space of fields collectively
denoted @. e.g. fields can be R-val'd scalars; gauge fields;
p-forms; or maps to a “target space” ® : My — W.
> A local action functional S[®], which is the action for the
classical field theory we are quantizing.

m Objects of interest are path integrals, expressions like
/ D® e S9! (1)

> If M, closed, integral above gives partition function Z[M,]

» If M, has boundary M,_, then integral depends on
boundary conditions (BCs) for fields. e.g. if ®|y;, , = ¢, then
we can consider functions

U[y] = D® e 51 e H(My_,) (2)
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PATH INTEGRAL: TFT AXIOMS, (- - -), ETC.

m If M, has incoming and outgoing boundaries M , and M |
then the path-integral assigns a transition amplitude

between (¢~ | and |¢™).

m Taking these ideas to simplest and most axiomatic form
gives e.g. Atiyah-Segal axioms for topological field theory.

A d dim topological field theory is a symmetric monoidal functor

Z : Bord,_1ny — Vecc.

m Correlation functions in the theory are given by

(O1(z1) -+ Op(z)) = y D Oy(z1) - On(zn) e 5 (3)



SYMMETRIES




SYMMETRIES: NOETHER'S THEOREM

m Noether's theorem associates a current to every continuous
symmetry, which is conserved (on-shell).

m For simplicity, consider a classical theory of a real scalar ¢. If

6L = 0 under
b ¢ =d+edd, (4)
then on-shell
oL .
r= 5¢ satisfies 9,J* =0. (5)
50,9) " b

m There is an associated conserved charge supported on a
codimension 1 manifold M,;_, C M;

Q(M, 1) = / o] (6)

Mg




SYMMETRIES: WARD IDENTITIES 1/2

m Consider the same transformation in the path-integral for a
correlation function (write X := ¢(x1) - - - ¢(xy,))
> From the point of view of the path integral, ¢ — ¢’ = ¢ + i
is just a change of variables, so leaves it unchanged:

() = [ Do x5, (?)
= / D¢ X'e= 511 (8)
— [ D¢ (x + sx)e (ST et @) (o)

m If we assume D¢ = D¢’ and expand to first order in ¢, we get

6X)loto = [ d' (@.7X) e(o) (10)

- 6|



SYMMETRIES: WARD IDENTITIES 2/2

m Let’s look at the LHS of this equation
(6X o = / d'z (3, J"X) e(x) (1)
> We can write

5Xlow = €3 $(@)- - 86(ze) - $(n), (12)
=il
— [ dhaela) Y oo — molan) -+ 06 (wi) -+ olan).
=1

Ward Identity

(0ug* (@) (1) -+~ P(an)) = D 6(w — zi)p(@1) - - - 6(ws) - - - Pan)

=1




TOPOLOGICAL DATA




TOPOLOGICAL DATA;: SYMMETRY OPERATORS 1/2

m Recall the Noether charge defined for some M, _; C M, as

Q(My_y) := / *J (13)

Mg_1

m Ward identities imply that the support M, 1 is only
topologically relevant in correlation functions

m We can exponentiate Q(M,_1) to get a symmetry operator
associated with a “less infinitesimal” symmetry.

Ug(Md—l) ~ eXp(iwaQa(Md—l)) . (14)

8]



TOPOLOGICAL DATA: SYMMETRY OPERATORS 2/2

m More generally, for every g € G, define U, (M) by cutting
spacetime along M;_; and acting with appropriate g-action
on the complete set of states associated with M;_;.

» Works for discrete G.

m Operations then compose like

Ug(Mg_1)Up(Mg—1) = Ugn(Mg_1) (15)

Symmetry Defects

Symmetry defects are invertible topological codim 1 defects




TOPOLOGICAL DATA: BACKGROUND FLAT CONNECTIONS

m What does a connection A do in a gauge theory? Tells us
about about things like parallel transport. Holonomies.

m Our new view of symmetry operators as codimension 1
defects gives us a way to understand background flat
connections.

» Every background flat connection can be understood as a
network of defects, labelling holonomy around
non-contractible loops.

> Gauge transformations just shift the domain walls around.
> Every connection for a discrete gauge theory is flat.




TOPOLOGICAL DATA: SPT PHASES

m Given a theory T with partition function Z; on M, and
symmetry group G, we can consider the theory in the
presence of a background G gauge field Z[My; A].

m When G is discrete and abelian, we call this the twisted
partition function. Connections are A € H'(M,, G) labelling
holonomy around non-contractible cycles.

m A G SPT Phase is a gapped phase which is indistinguishable
from trivial if one disregards symmetry.

> In presence of background G gauge field, the partition
function isa U(1) number.

» Actions classified by group cohomology or cobordism theory.

> Can “stack” these SPT phases with more typical theories to
change the topological properties of the theory.




TOPOLOGICAL DATA: WILSON AND 'T HOOFT LINES

m G gauge theory has an interesting set of topological
operators, called Wilson Lines; the worldline of an infinitely
massive electrically charged particle

Wi(y) = Tr Pexp <@ /7 A> | (16)

> Labelled by a rep R of G.

m There are also 't Hooft Lines, which correspond to worldline
of infinitely massive magnetically charged particle

> Labelled by a cocharacter i : U(1) — G.
m Also dyonic lines with both electric and magnetic charge.

m Lines can braid around each other and collect phases, and
fuse into different dyons.




EXAMPLE: TORIC CODE




EXAMPLE: TORIC CODE - GENERAL FACTS

m Toric Code or (2+1)d Z, Gauge Theory can be thought of in a
number of different ways
> As Z, lattice gauge theory: start with 2d square lattice with
spins on vertices; introduce “connection” on edges; gauge.

> Simplest example of Z, topological order

> As U(1)% Chern-Simons at level K = <g (2)>

> As (2+1)d U(1) gauge theory broken down to Z,
> As “gauged Z, SPT theory” or Z, Dijkgraaf-Witten theory.

m We pre-highlight some key facts:
1. It has 4 lines (simple)
2. It has 2 gapped boundary conditions (bosonic)




EXAMPLE: TORIC CODE - LATTICE 1/2

m 2d square lattice with
spin-1/2 DoF on each edge.

m Introduce operators

AUZHUf, Bp:HUiZ-

i€V 1EP

® The Hamiltonian is
H=-JY A,-J> B,
v p
m The GS of Hamiltonian is

Ay [$) = By [¥) = [¢)




EXAMPLE: TORIC CODE - LATTICE 2/2

m Two types of gapped boundary
conditions: rough and smooth.

m When ¢ line approaches rough
boundary, it can disappear!

m m line gets stuck at rough boundary!
Boundary excitations for rough
boundary are {1, m}

m This also shows off electric-magnetic duality: on the dual
lattice we have the same physics, but e and m lines switch
roles. The rough and smooth boundaries switch roles too.




EXAMPLE: TORIC CODE - CONTINUUM 1/2

M3 = M x [0, 1]
Dynamical Z, Connection

m If e line is the Wilson Line, then we saw there is a boundary
(rough) where it can end. This is Dirichlet BC for bulk gauge
field.

> In this case, m is "t Hooft line and is a boundary excitation.

» The smooth boundary looks like a Neumann BC for the bulk
gauge field.




EXAMPLE: TORIC CODE - CONTINUUM 2/2

m Write |D[Ap]) for the Dirichlet BC that sets the 3d bulk
connection to look like Ay at the boundary.

m It ““makes sense””” that a Neumann BC (free BC) is like a
sum over all Dirichlet BCs
IN):= Y |D[By) (17)
BaEHl(MQ,ZQ)
m Take some (1+1)d theory T with Z, symmetry. Make a new

enriched BC for the toric code by using A5 as background
gauge field for 7.

Couple to Ay ]
RARRRNRNNRNR G Connection A

T Thc




EXAMPLE: TORIC CODE - 2D DUALITIES & 3D BULK 1/2

m The state of the (2+1)d TFT given by the T-enriched BC is

=" Zr[Ao] ID[As]) (18)
Ap
) Compactify
Connection A AAAAAAAAAANAY

Tsc DI[Bj] T

m Equip one end of a slab with T-enriched BC (i.e. (7'|) and the
other with Dirichlet BC | D[35]), then

(T'|D|Bal) Z Z7[Ap] (D[As]|D[Bs]) = Zr[Bo) (19)




EXAMPLE: TORIC CODE - 2D DUALITIES & 3D BULK 2/2

m Use Neumann BC instead

T):= > Zp[Ao] |D[As)) (20)
Ag
) Compactify
Connection A AANAANAANNANY

Tgc N T

m Then we get the following (1+1)d gauged partition function
from compactification instead:

(TINY o< Y Zr[As] (D[As]|D[B5]) ZZTAa (21)
Aa,Ba




CONCLUSION




RECAP AND OUTLOOK

Take away slogans from today:

1. The path integral associates a number to a closed manifold
and a space of states to a boundary (or interface).

2. Symmetries correspond to invertible codimension 1
operators with topological support.

3. Boundary conditions for gauge theories have a rich structure
and can be used to probe the gauge theory or other theories.

20/ 20
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