TOPOLOGICAL ASPECTS OF QFT FOR PSI GRAD STUDENT TALK DAY

JUSTIN KULP

PERIMETER INSTITUTE FOR THEORETICAL PHYSICS

02/SEPT/2021

OVERVIEW

1 Path Integral

- 2 Symmetries
- 3 Topological Data
- 4 Example: Toric Code

5 Conclusion

INTRODUCTION: OUTLINE AND GOAL OF TALK

 Give a survey of: path integrals; symmetry operators; examples of topological data in QFT; and toric code.

Goals:

- 1. Describe vaguely what a path integral is.
- 2. Show how symmetries correspond to invertible codimension 1 operators with topological support.
- Bonus. Illustrate how we can blow up a (1+1)d theory to a (2+1)d gauge theory sandwich.

Key Words:

Axiomatic QFT; non-Lagrangian theories; topological field theory; anomalies; higher-form symmetries; categorical symmetries; SPT phases; cobordism; toric code; topological order; Chern-Simons theory; electric-magnetic duality; boundary conditions of gauge theory; orbifold

PATH INTEGRAL

PATH INTEGRAL: BASICS

- To describe a d-dim Quantum Field Theory (QFT), we might start with the following data
 - ▶ A *d*-dim manifold M_d with a **space of fields** collectively denoted Φ . e.g. fields can be \mathbb{R} -val'd scalars; gauge fields; *p*-forms; or maps to a "target space" $\Phi : M_d \to W$.
 - ► A local action functional *S*[Φ], which is the action for the classical field theory we are quantizing.
- Objects of interest are **path integrals**, expressions like

$$\int D\Phi \, e^{-S[\Phi]} \tag{1}$$

- If M_d closed, integral above gives partition function $Z[M_d]$
- ► If M_d has boundary M_{d-1} , then integral depends on boundary conditions (BCs) for fields. e.g. if $\Phi|_{M_{d-1}} = \varphi$, then we can consider functions

$$\Psi[\varphi] = \int_{\Phi|_{M_{d-1}}=\varphi} D\Phi \, e^{-S[\Phi]} \in \mathcal{H}(M_{d-1}) \tag{2}$$

PATH INTEGRAL: TFT AXIOMS, $\overline{\langle \cdots \rangle}$, etc.

- If M_d has incoming and outgoing boundaries M_{d-1}^- and M_{d-1}^+ then the path-integral assigns a transition amplitude between $\langle \varphi^- |$ and $|\varphi^+ \rangle$.
- Taking these ideas to simplest and most axiomatic form gives e.g. Atiyah-Segal axioms for topological field theory.

A d dim topological field theory is a symmetric monoidal functor

$$Z : \operatorname{Bord}_{\langle n-1,n \rangle} \to \operatorname{Vec}_{\mathbb{C}}.$$

Correlation functions in the theory are given by

$$\langle \mathcal{O}_1(x_1)\cdots\mathcal{O}_n(x_n)\rangle = \int_{M_d} D\Phi \ \mathcal{O}_1(x_1)\cdots\mathcal{O}_n(x_n) e^{-S[\Phi]}$$
 (3)

Symmetries: Noether's Theorem

- Noether's theorem associates a current to every continuous symmetry, which is conserved (on-shell).
- For simplicity, consider a classical theory of a real scalar ϕ . If $\delta L = 0$ under

$$\phi \mapsto \phi' = \phi + \epsilon \delta \phi \,, \tag{4}$$

then on-shell

$$J^{\mu} := \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \delta \phi$$
 satisfies $\partial_{\mu} J^{\mu} = 0$. (5)

There is an associated **conserved charge** supported on a codimension 1 manifold $M_{d-1} \subset M_d$

$$Q(M_{d-1}) := \int_{M_{d-1}} \star J \tag{6}$$

Symmetries: Ward Identities 1/2

- Consider the same transformation in the path-integral for a correlation function (write $X := \phi(x_1) \cdots \phi(x_n)$)
 - From the point of view of the path integral, $\phi \mapsto \phi' = \phi + \epsilon \delta \phi$ is just a change of variables, so leaves it unchanged:

$$\langle X \rangle = \int D\phi \, X e^{-S[\phi]} \,, \tag{7}$$

$$= \int D\phi' X' e^{-S[\phi']}, \qquad (8)$$

$$= \int D\phi' \left(X + \delta X \right) e^{-\left(S[\phi] - \int d^d x \, \partial_\mu J^\mu \epsilon(x) \right)} \,. \tag{9}$$

If we assume $D\phi = D\phi'$ and expand to first order in ϵ , we get

$$\langle \delta X \rangle |_{\mathcal{O}(\epsilon)} = \int d^d x \, \langle \partial_\mu J^\mu X \rangle \, \epsilon(x)$$
 (10)

Symmetries: Ward Identities 2/2

Let's look at the LHS of this equation

$$\langle \delta X \rangle|_{\mathcal{O}(\epsilon)} = \int d^d x \, \langle \partial_\mu J^\mu X \rangle \,\epsilon(x)$$
 (11)

We can write

$$\delta X|_{\mathcal{O}(\epsilon)} = \epsilon \sum_{i=1}^{n} \phi(x_1) \cdots \delta \phi(x_i) \cdots \phi(x_n), \qquad (12)$$

$$= \int d^d x \, \epsilon(x) \sum_{i=1}^{n} \delta(x - x_i) \phi(x_1) \cdots \delta \phi(x_i) \cdots \phi(x_n).$$

Ward Identity

$$\langle \partial_{\mu} j^{\mu}(x) \phi(x_1) \cdots \phi(x_n) \rangle = \sum_{i=1}^n \delta(x - x_i) \phi(x_1) \cdots \delta\phi(x_i) \cdots \phi(x_n)$$

TOPOLOGICAL DATA

TOPOLOGICAL DATA: SYMMETRY OPERATORS 1/2

Recall the Noether charge defined for some $M_{d-1} \subset M_d$ as

$$Q(M_{d-1}) := \int_{M_{d-1}} \star J$$
 (13)

Ward identities imply that the support M_{d-1} is only topologically relevant in correlation functions

■ We can exponentiate $Q(M_{d-1})$ to get a symmetry operator associated with a "less infinitesimal" symmetry.

$$U_g(M_{d-1}) \sim \exp(i\omega_a Q^a(M_{d-1}))$$
. (14)

TOPOLOGICAL DATA: SYMMETRY OPERATORS 2/2

- More generally, for every $g \in G$, define $U_g(M_{d-1})$ by cutting spacetime along M_{d-1} and acting with appropriate g-action on the complete set of states associated with M_{d-1} .
 - ► Works for discrete *G*.

Operations then compose like

$$U_g(M_{d-1})U_h(M_{d-1}) = U_{gh}(M_{d-1})$$
(15)

Symmetry Defects

Symmetry defects are invertible topological codim 1 defects

TOPOLOGICAL DATA: BACKGROUND FLAT CONNECTIONS

What does a connection A do in a gauge theory? Tells us about about things like parallel transport. Holonomies.

- Our new view of symmetry operators as codimension 1 defects gives us a way to understand background flat connections.
 - Every background flat connection can be understood as a network of defects, labelling holonomy around non-contractible loops.
 - Gauge transformations just shift the domain walls around.
 - Every connection for a discrete gauge theory is flat.

TOPOLOGICAL DATA: SPT PHASES

- Given a theory T with partition function Z_T on M_d and symmetry group G, we can consider the theory in the presence of a background G gauge field $Z[M_d; A]$.
- When G is discrete and abelian, we call this the **twisted** partition function. Connections are $A \in H^1(M_d, G)$ labelling holonomy around non-contractible cycles.
- A *G* **SPT Phase** is a gapped phase which is indistinguishable from trivial if one disregards symmetry.
 - ► In presence of background *G* gauge field, the partition function is a *U*(1) number.
 - Actions classified by group cohomology or cobordism theory.
 - Can "stack" these SPT phases with more typical theories to change the topological properties of the theory.

TOPOLOGICAL DATA: WILSON AND 'T HOOFT LINES

 G gauge theory has an interesting set of topological operators, called Wilson Lines; the worldline of an infinitely massive electrically charged particle

$$W_R(\gamma) = \operatorname{Tr}_R P \exp\left(i\int_{\gamma} A\right)$$
 (16)

► Labelled by a rep *R* of *G*.

There are also 't Hooft Lines, which correspond to worldline of infinitely massive magnetically charged particle

• Labelled by a cocharacter $\hat{\mu} : U(1) \rightarrow G$.

- Also dyonic lines with both electric and magnetic charge.
- Lines can braid around each other and collect phases, and fuse into different dyons.

EXAMPLE: TORIC CODE

EXAMPLE: TORIC CODE - GENERAL FACTS

- Toric Code or (2+1)d Z₂ Gauge Theory can be thought of in a number of different ways
 - As Z₂ lattice gauge theory: start with 2d square lattice with spins on vertices; introduce "connection" on edges; gauge.
 - ► Simplest example of Z₂ topological order
 - As $U(1)^2$ Chern-Simons at level $K = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$
 - As (2+1)d U(1) gauge theory broken down to \mathbb{Z}_2
 - ▶ As "gauged \mathbb{Z}_2 SPT theory" or \mathbb{Z}_2 Dijkgraaf-Witten theory.
- We pre-highlight some key facts:
 - 1. It has 4 lines (simple)
 - 2. It has 2 gapped boundary conditions (bosonic)

EXAMPLE: TORIC CODE - LATTICE 1/2

 $A_{v}\left|\psi\right\rangle = B_{p}\left|\psi\right\rangle = \left|\psi\right\rangle$

EXAMPLE: TORIC CODE - LATTICE 2/2

- Two types of gapped boundary conditions: rough and smooth.
- When e line approaches rough boundary, it can disappear!
- *m* line gets stuck at rough boundary! Boundary excitations for rough boundary are {1, *m*}
- This also shows off electric-magnetic duality: on the dual lattice we have the same physics, but e and m lines switch roles. The rough and smooth boundaries switch roles too.

EXAMPLE: TORIC CODE - CONTINUUM 1/2

 $M_3 = M_2 \times [0,1]$ Dynamical \mathbb{Z}_2 Connection

- If e line is the Wilson Line, then we saw there is a boundary (rough) where it can end. This is Dirichlet BC for bulk gauge field.
 - ▶ In this case, *m* is **'t Hooft line** and is a boundary excitation.
 - The smooth boundary looks like a Neumann BC for the bulk gauge field.

EXAMPLE: TORIC CODE - CONTINUUM 2/2

- Write |D[A_∂]⟩ for the Dirichlet BC that sets the 3d bulk connection to look like A_∂ at the boundary.
- It """makes sense"" that a Neumann BC (free BC) is like a sum over all Dirichlet BCs

$$|N\rangle := \sum_{B_{\partial} \in H^{1}(M_{2}, \mathbb{Z}_{2})} |D[B_{\partial}]\rangle$$
(17)

Take some (1+1)d theory T with \mathbb{Z}_2 symmetry. Make a new enriched BC for the toric code by using A_∂ as background gauge field for T.

EXAMPLE: TORIC CODE - 2D DUALITIES & 3D BULK 1/2

■ The state of the (2+1)d TFT given by the *T*-enriched BC is

$$|T\rangle := \sum_{A_{\partial}} Z_{T}[A_{\partial}] |D[A_{\partial}]\rangle$$
(18)

Equip one end of a slab with *T*-enriched BC (i.e. $\langle T|$) and the other with **Dirichlet BC** $|D[\beta_{\partial}]\rangle$, then

$$\langle T|D[\beta_{\partial}]\rangle = \sum_{A_{\partial}} Z_T[A_{\partial}] \langle D[A_{\partial}]|D[\beta_{\partial}]\rangle = Z_T[B_{\partial}]$$
(19)

EXAMPLE: TORIC CODE - 2D DUALITIES & 3D BULK 2/2

Use Neumann BC instead

$$|T\rangle := \sum_{A_{\partial}} Z_{T}[A_{\partial}] |D[A_{\partial}]\rangle$$
 (20)

Then we get the following (1+1)d gauged partition function from compactification instead:

$$\langle T|N \rangle \propto \sum_{A_{\partial},\beta_{\partial}} Z_T[A_{\partial}] \langle D[A_{\partial}]|D[\beta_{\partial}] \rangle = \sum_{A_{\partial}} Z_T[A_{\partial}]$$
 (21)

19

Take away slogans from today:

- 1. The path integral associates a number to a closed manifold and a space of states to a boundary (or interface).
- 2. Symmetries correspond to invertible codimension 1 operators with topological support.
- 3. Boundary conditions for gauge theories have a rich structure and can be used to probe the gauge theory or other theories.

