TOPOLOGICAL ASPECTS OF QFT for PSI Grad Student Talk Day

Justin Kulp
Perimeter Institute for Theoretical Physics

02/SEPT/2021

Overview

1 Path Integral

2 Symmetries

3 Topological Data

4 Example: Toric Code

5 Conclusion

INTRODUCTION: OUTLINE AND GOAL OF TALK

■ Give a survey of: path integrals; symmetry operators; examples of topological data in QFT; and toric code.

■ Goals:

1. Describe vaguely what a path integral is.
2. Show how symmetries correspond to invertible codimension 1 operators with topological support.
Bonus. Illustrate how we can blow up a (1+1)d theory to a (2+1)d gauge theory sandwich.

Key Words:

Axiomatic QFT; non-Lagrangian theories; topological field theory; anomalies; higher-form symmetries; categorical symmetries; SPT phases; cobordism; toric code; topological order; Chern-Simons theory; electric-magnetic duality; boundary conditions of gauge theory; orbifold

PATH INTEGRAL

PATH INTEGRAL: BASICS

■ To describe a d-dim Quantum Field Theory (QFT), we might start with the following data

- A d-dim manifold M_{d} with a space of fields collectively denoted Φ. e.g. fields can be \mathbb{R}-val'd scalars; gauge fields; p-forms; or maps to a "target space" $\Phi: M_{d} \rightarrow W$.
- A local action functional $S[\Phi]$, which is the action for the classical field theory we are quantizing.
■ Objects of interest are path integrals, expressions like

$$
\begin{equation*}
\int D \Phi e^{-S[\Phi]} \tag{1}
\end{equation*}
$$

- If M_{d} closed, integral above gives partition function $Z\left[M_{d}\right]$
- If M_{d} has boundary M_{d-1}, then integral depends on boundary conditions (BCs) for fields. e.g. if $\left.\Phi\right|_{M_{d-1}}=\varphi$, then we can consider functions

$$
\begin{equation*}
\Psi[\varphi]=\int_{\left.\Phi\right|_{M_{d-1}}=\varphi} D \Phi e^{-S[\Phi]} \in \mathcal{H}\left(M_{d-1}\right) \tag{2}
\end{equation*}
$$

PATH INTEGRAL: TFT AxIOMS, $\langle\cdots\rangle$, ETC.

- If M_{d} has incoming and outgoing boundaries M_{d-1}^{-}and M_{d-1}^{+} then the path-integral assigns a transition amplitude between $\left\langle\varphi^{-}\right|$and $\left|\varphi^{+}\right\rangle$.
- Taking these ideas to simplest and most axiomatic form gives e.g. Atiyah-Segal axioms for topological field theory.

A d dim topological field theory is a symmetric monoidal functor

$$
Z: \operatorname{Bord}_{\langle n-1, n\rangle} \rightarrow \operatorname{Vec}_{\mathbb{C}} .
$$

- Correlation functions in the theory are given by

$$
\begin{equation*}
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \cdots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle=\int_{M_{d}} D \Phi \mathcal{O}_{1}\left(x_{1}\right) \cdots \mathcal{O}_{n}\left(x_{n}\right) e^{-S[\Phi]} \tag{3}
\end{equation*}
$$

SYMMETRIES

SYMMETRIES: NOETHER'S THEOREM

■ Noether's theorem associates a current to every continuous symmetry, which is conserved (on-shell).

■ For simplicity, consider a classical theory of a real scalar ϕ. If $\delta L=0$ under

$$
\begin{equation*}
\phi \mapsto \phi^{\prime}=\phi+\epsilon \delta \phi, \tag{4}
\end{equation*}
$$

then on-shell

$$
\begin{equation*}
J^{\mu}:=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi \quad \text { satisfies } \quad \partial_{\mu} J^{\mu}=0 \tag{5}
\end{equation*}
$$

■ There is an associated conserved charge supported on a codimension 1 manifold $M_{d-1} \subset M_{d}$

$$
\begin{equation*}
Q\left(M_{d-1}\right):=\int_{M_{d-1}} \star J \tag{6}
\end{equation*}
$$

SYMMETRIES: WARD IDENTITIES 1/2

- Consider the same transformation in the path-integral for a correlation function (write $X:=\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)$)
- From the point of view of the path integral, $\phi \mapsto \phi^{\prime}=\phi+\epsilon \delta \phi$ is just a change of variables, so leaves it unchanged:

$$
\begin{align*}
\langle X\rangle & =\int D \phi X e^{-S[\phi]}, \tag{7}\\
& =\int D \phi^{\prime} X^{\prime} e^{-S\left[\phi^{\prime}\right]}, \tag{8}\\
& =\int D \phi^{\prime}(X+\delta X) e^{-\left(S[\phi]-\int d^{d} x \partial_{\mu} J^{\mu} \epsilon(x)\right) .} \tag{9}
\end{align*}
$$

■ If we assume $D \phi=D \phi^{\prime}$ and expand to first order in ϵ, we get

$$
\begin{equation*}
\left.\langle\delta X\rangle\right|_{\mathcal{O}(\epsilon)}=\int d^{d} x\left\langle\partial_{\mu} J^{\mu} X\right\rangle \epsilon(x) \tag{10}
\end{equation*}
$$

SYMMETRIES: WARD IDENTITIES 2/2

■ Let's look at the LHS of this equation

$$
\begin{equation*}
\left.\langle\delta X\rangle\right|_{\mathcal{O}(\epsilon)}=\int d^{d} x\left\langle\partial_{\mu} J^{\mu} X\right\rangle \epsilon(x) \tag{11}
\end{equation*}
$$

- We can write

$$
\begin{align*}
\left.\delta X\right|_{\mathcal{O}(\epsilon)} & =\epsilon \sum_{i=1}^{n} \phi\left(x_{1}\right) \cdots \delta \phi\left(x_{i}\right) \cdots \phi\left(x_{n}\right) \tag{12}\\
& =\int d^{d} x \epsilon(x) \sum_{i=1}^{n} \delta\left(x-x_{i}\right) \phi\left(x_{1}\right) \cdots \delta \phi\left(x_{i}\right) \cdots \phi\left(x_{n}\right)
\end{align*}
$$

Ward Identity

$$
\left\langle\partial_{\mu} j^{\mu}(x) \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\sum_{i=1}^{n} \delta\left(x-x_{i}\right) \phi\left(x_{1}\right) \cdots \delta \phi\left(x_{i}\right) \cdots \phi\left(x_{n}\right)
$$

TOPOLOGICAL DATA

TOPOLOGICAL DATA: SYMMETRY OPERATORS 1/2

■ Recall the Noether charge defined for some $M_{d-1} \subset M_{d}$ as

$$
\begin{equation*}
Q\left(M_{d-1}\right):=\int_{M_{d-1}} \star J \tag{13}
\end{equation*}
$$

■ Ward identities imply that the support M_{d-1} is only topologically relevant in correlation functions

■ We can exponentiate $Q\left(M_{d-1}\right)$ to get a symmetry operator associated with a "less infinitesimal" symmetry.

$$
\begin{equation*}
U_{g}\left(M_{d-1}\right) \sim \exp \left(i \omega_{a} Q^{a}\left(M_{d-1}\right)\right) \tag{14}
\end{equation*}
$$

TOPOLOGICAL DATA: SYMMETRY OPERATORS 2/2

■ More generally, for every $g \in G$, define $U_{g}\left(M_{d-1}\right)$ by cutting spacetime along M_{d-1} and acting with appropriate g-action on the complete set of states associated with M_{d-1}.

- Works for discrete G.

■ Operations then compose like

$$
\begin{equation*}
U_{g}\left(M_{d-1}\right) U_{h}\left(M_{d-1}\right)=U_{g h}\left(M_{d-1}\right) \tag{15}
\end{equation*}
$$

Symmetry Defects

Symmetry defects are invertible topological codim 1 defects

TOPOLOGICAL DATA: BACKGROUND FLAT CONNECTIONS

■ What does a connection A do in a gauge theory? Tells us about about things like parallel transport. Holonomies.

■ Our new view of symmetry operators as codimension 1 defects gives us a way to understand background flat connections.

- Every background flat connection can be understood as a network of defects, labelling holonomy around non-contractible loops.
- Gauge transformations just shift the domain walls around.
- Every connection for a discrete gauge theory is flat.

TOPOLOGICAL DATA: SPT PHASES

■ Given a theory T with partition function Z_{T} on M_{d} and symmetry group G, we can consider the theory in the presence of a background G gauge field $Z\left[M_{d} ; A\right]$.
■ When G is discrete and abelian, we call this the twisted partition function. Connections are $A \in H^{1}\left(M_{d}, G\right)$ labelling holonomy around non-contractible cycles.
■ A G SPT Phase is a gapped phase which is indistinguishable from trivial if one disregards symmetry.

- In presence of background G gauge field, the partition function is a $U(1)$ number.
- Actions classified by group cohomology or cobordism theory.
- Can "stack" these SPT phases with more typical theories to change the topological properties of the theory.

TOPOLOGICAL DATA: WILSON AND ד Hooft Lines

■ G gauge theory has an interesting set of topological operators, called Wilson Lines; the worldline of an infinitely massive electrically charged particle

$$
\begin{equation*}
W_{R}(\gamma)=\operatorname{Tr}_{R} P \exp \left(i \int_{\gamma} A\right) \tag{16}
\end{equation*}
$$

- Labelled by a rep R of G.

■ There are also 't Hooft Lines, which correspond to worldline of infinitely massive magnetically charged particle

- Labelled by a cocharacter $\hat{\mu}: U(1) \rightarrow G$.

■ Also dyonic lines with both electric and magnetic charge.
■ Lines can braid around each other and collect phases, and fuse into different dyons.

Example: TORIC CODE

Example: TORIC CODE - GENERAL FACTS

$■$ Toric Code or (2+1)d \mathbb{Z}_{2} Gauge Theory can be thought of in a number of different ways

- As \mathbb{Z}_{2} lattice gauge theory: start with 2d square lattice with spins on vertices; introduce "connection" on edges; gauge.
- Simplest example of \mathbb{Z}_{2} topological order
- As $U(1)^{2}$ Chern-Simons at level $K=\left(\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right)$
- As (2+1)d $U(1)$ gauge theory broken down to \mathbb{Z}_{2}
- As "gauged \mathbb{Z}_{2} SPT theory" or \mathbb{Z}_{2} Dijkgraaf-Witten theory.

■ We pre-highlight some key facts:

1. It has 4 lines (simple)
2. It has 2 gapped boundary conditions (bosonic)

EXAMPLE: TORIC CODE - LATtICE 1/2

- 2d square lattice with spin-1/2 DoF on each edge.

■ Introduce operators

$$
A_{v}=\prod_{i \in v} \sigma_{i}^{x}, \quad B_{p}=\prod_{i \in p} \sigma_{i}^{z}
$$

■ The Hamiltonian is

$$
H=-J \sum_{v} A_{v}-J \sum_{p} B_{p}
$$

- The GS of Hamiltonian is

$$
A_{v}|\psi\rangle=B_{p}|\psi\rangle=|\psi\rangle
$$

EXAMPLE: TORIC CODE - LATTICE 2/2

- Two types of gapped boundary conditions: rough and smooth.
- When e line approaches rough boundary, it can disappear!
- m line gets stuck at rough boundary! Boundary excitations for rough boundary are $\{1, m\}$
- This also shows off electric-magnetic duality: on the dual lattice we have the same physics, but e and m lines switch roles. The rough and smooth boundaries switch roles too.

Example: TORIC CODE - CONTINUUM $1 / 2$

$$
\begin{gathered}
M_{3}=M_{2} \times[0,1] \\
\text { Dynamical } \mathbb{Z}_{2} \text { Connection }
\end{gathered}
$$

- If e line is the Wilson Line, then we saw there is a boundary (rough) where it can end. This is Dirichlet BC for bulk gauge field.
- In this case, m is 't Hooft line and is a boundary excitation.
- The smooth boundary looks like a Neumann BC for the bulk gauge field.

Example: Toric Code - Continuum 2/2

■ Write $\left|D\left[A_{\partial}\right]\right\rangle$ for the Dirichlet $\mathbf{B C}$ that sets the 3d bulk connection to look like A_{∂} at the boundary.
■ It """ "makes sense""" that a Neumann BC (free BC) is like a sum over all Dirichlet BCs

$$
\begin{equation*}
|N\rangle:=\sum_{B_{\partial} \in H^{1}\left(M_{2}, \mathbb{Z}_{2}\right)}\left|D\left[B_{\partial}\right]\right\rangle \tag{17}
\end{equation*}
$$

■ Take some (1+1)d theory T with \mathbb{Z}_{2} symmetry. Make a new enriched BC for the toric code by using A_{∂} as background gauge field for T.

EXAMPLE: TORIC CODE - 2D DUALITIES \& 3D BULK 1/2

■ The state of the $(2+1)$ d TFT given by the T-enriched BC is

$$
\begin{equation*}
|T\rangle:=\sum_{A_{\partial}} Z_{T}\left[A_{\partial}\right]\left|D\left[A_{\partial}\right]\right\rangle \tag{18}
\end{equation*}
$$

■ Equip one end of a slab with T-enriched BC (i.e. $\langle T|$) and the other with Dirichlet $\mathbf{B C}\left|D\left[\beta_{\partial}\right]\right\rangle$, then

$$
\begin{equation*}
\left\langle T \mid D\left[\beta_{\partial}\right]\right\rangle=\sum_{A_{\partial}} Z_{T}\left[A_{\partial}\right]\left\langle D\left[A_{\partial}\right] \mid D\left[\beta_{\partial}\right]\right\rangle=Z_{T}\left[B_{\partial}\right] \tag{19}
\end{equation*}
$$

EXAMPLE: TORIC CODE - 2D DUALITIES \& 3D BULK 2/2

■ Use Neumann BC instead

$$
\begin{equation*}
|T\rangle:=\sum_{A_{\partial}} Z_{T}\left[A_{\partial}\right]\left|D\left[A_{\partial}\right]\right\rangle \tag{20}
\end{equation*}
$$

- Then we get the following (1+1)d gauged partition function from compactification instead:

$$
\begin{equation*}
\langle T \mid N\rangle \propto \sum_{A_{\partial}, \beta_{\partial}} Z_{T}\left[A_{\partial}\right]\left\langle D\left[A_{\partial}\right] \mid D\left[\beta_{\partial}\right]\right\rangle=\sum_{A_{\partial}} Z_{T}\left[A_{\partial}\right] \tag{21}
\end{equation*}
$$

Conclusion

RECAP AND OUTLOOK

Take away slogans from today:

1. The path integral associates a number to a closed manifold and a space of states to a boundary (or interface).
2. Symmetries correspond to invertible codimension 1 operators with topological support.
3. Boundary conditions for gauge theories have a rich structure and can be used to probe the gauge theory or other theories.

FIN

