THE $3 d O(N)$ MODEL ON the Celestial Circle

 for Celestial Holography '22 (Gong Show)Justin Kulp
Work in Progress with Diego García-Sepúlveda, Alfredo Guevara, and Jingilang Wu 04/FEB/2022

MOtivation

- What can Celestial Holography teach us about the structure of Quantum Field Theory?

1. The optical theorem applies to the imaginary piece of the 4-point function. How does unitarity extend to the full correlation function?
2. How does the CCFT spectrum emerge from the principal continuous series? What does it mean for scattering amplitudes?
3. Which conclusions hold beyond tree level?

- Last point is particularly pressing because celestial amplitudes are highly sensitive to UV physics.

■ The $O(N)$ model shines light on these questions, even in a strongly-coupled regime.

THE $O(N)$ MODEL IN $3 d$

■ The $O(N)$ model is a theory of N real scalars with Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi^{a} \partial^{\mu} \varphi^{a}-\frac{1}{2} \mu_{0}^{2} \varphi^{a} \varphi^{a}-\frac{\lambda_{0}}{8 N}\left(\varphi^{a} \varphi^{a}\right)^{2} \tag{1}
\end{equation*}
$$

- Canonical example of spontaneous symmetry breaking. Leaving $N-1$ massless pions π^{a}, and massive σ boson
- Study perturbatively in λ or in $1 / N$ expansion with λ fixed
- To solve in $1 / N$, introduce Hubbard-Stratonovich field χ and compute $\Gamma_{\text {eff }}$ [Coleman Jackiw Politzer], [Gross Neveu].
- Pion propagator is $D_{\pi^{a} \pi^{b}}=\delta^{a b} / p^{2}$.
- Mixing between σ and χ. Propagators can be computed

$$
\begin{equation*}
D_{\sigma \sigma}=\frac{p+\frac{\lambda}{16}}{p\left(p^{2}+\frac{\lambda}{16} p-2 \mu^{2}\right)}, \quad D_{\chi \chi}=-\frac{\lambda}{N} \frac{p^{2}}{p^{2}+\frac{\lambda}{16} p-2 \mu^{2}} \tag{2}
\end{equation*}
$$

■ Both $D_{\sigma \sigma}$ and $D_{\chi \chi}$ have poles on second sheet at

$$
\begin{equation*}
p_{ \pm}=-\frac{\lambda}{32} \pm i \sqrt{-2 \mu^{2}-\left(\frac{\lambda}{32}\right)^{2}} \tag{3}
\end{equation*}
$$

3PT AND 4PT AMPLITUDES

■ Can compute 3 pt amplitude: $\pi^{a} \pi^{b} \rightarrow \sigma$

$$
\begin{equation*}
T_{3}^{a b}\left(p_{ \pm}\right)=\sqrt{\frac{-\mu^{2} \lambda}{N}} \frac{-2 p_{ \pm}}{\sqrt{p_{\mp}\left(p_{\mp}-p_{ \pm}\right)}} \delta^{a b} \tag{4}
\end{equation*}
$$

- 2 resonances give 2 CCFT 3 pt functions $C\left(\Delta_{\pi}, \Delta_{\pi} ; \Delta_{\sigma_{ \pm}}\right)$

■ 4pt amplitude: $\pi^{a} \pi^{b} \rightarrow \pi^{c} \pi^{d}$ to leading order in $1 / N$

$$
\begin{equation*}
T_{4}^{a b, c d}\left(\omega^{2},-\frac{\omega^{2}}{z}\right)=-\frac{\lambda}{N} \frac{\omega^{2} \delta^{a b} \delta^{c d}}{\omega^{2}+i \frac{\lambda}{16} \omega+2 \mu^{2}}+(t \text {-diag })+(u \text {-diag }) \tag{5}
\end{equation*}
$$

■ Mellin transform to produce CCFT 4pt function

- Mellin integral free of poles on real axis and convergence strip includes 1 d principal continuous series $\Delta_{\pi} \in \frac{1}{2}+i \mathbb{R}$

THE CCFT FOUR POINT Function

CCFT Four Point Function

In the physical s-channel $z \in(1, \infty)$
$f_{s}^{a b c d}(z)=\mathcal{N} \mathcal{N}_{\alpha} \frac{z}{\sqrt{z-1}}\left(\delta^{a b} \delta^{c d} e^{i \pi \alpha}+\delta^{a c} \delta^{b d} z^{\alpha}+\delta^{a d} \delta^{b c}\left(\frac{z}{z-1}\right)^{\alpha}\right)$

- Where $2 \alpha:=\Delta_{\text {Tot. }}-3$ and

$$
\begin{equation*}
\mathcal{N}:=\frac{\pi \lambda}{N \sin \theta}, \quad \mathcal{N}_{\alpha}:=\frac{\left(-2 \mu^{2}\right)^{\alpha}}{2^{2+2 \alpha}} \frac{\sin [(2 \alpha+1) \theta]}{\sin (2 \pi \alpha)} . \tag{6}
\end{equation*}
$$

- Modified Generalized Free Field z-structure
- Satisfy "permutation relations" which relate different channels (and CFT crossing symmetry) [Lam Shao], [Mazáč] e.g.

$$
\begin{equation*}
z^{-2 \Delta} f_{t}^{a b c d}\left(\frac{1}{z}\right)=(1-z)^{-2 \Delta} f_{t}^{a d c b}(z)=(1-z)^{-2 \Delta} f_{t}^{c b a d}(z) \tag{7}
\end{equation*}
$$

UNITARITY AND OPTICAL THEOREM

■ Resonances mean we must consider more than just discontinuities when writing Optical Theorem in ω-plane

- Separate generic amplitude into two parts $t_{0}+t_{\mathrm{log}}$.
- One sector has been discussed recently [Chang Huang Huang Li]

$$
\begin{equation*}
\operatorname{Im}\left(\mathcal{A}\left(\Delta_{T}, z\right)\right)=\text { [Chang Huang Huang Li Formula] } \tag{8}
\end{equation*}
$$

$$
+\# \sum_{\omega_{\mathrm{res}}}\left[\underset{\omega=\omega_{\mathrm{res}}^{*}}{\boldsymbol{\operatorname { R e s }}}\left(\omega^{\Delta_{T}-4} t_{0}^{*}(\omega, z)\right)+\underset{\omega=-\omega_{\mathrm{res}}}{\boldsymbol{\operatorname { R e s }}}\left(\omega^{\Delta_{T}-4} t_{0}(-\omega, z)\right)\right]
$$

CONFORMAL BLOCK DECOMPOSITION

■ Perform conformal block decomposition for CCFT 4pt func.

- Two infinite towers of poles, "single trace" and "double trace"

$$
\begin{equation*}
\Delta_{\mathcal{O}}=n, \quad \Delta_{\mathcal{O}}=\alpha+n+1, \quad n \in \mathbb{N}^{0} \tag{9}
\end{equation*}
$$

■ Conformal partial wave decomposition by Euclidean IF

- In 1d, conformal partial waves $\Psi_{\Delta, J}(z)$ have principal continuous series $\Delta=\frac{1}{2}+i r, r \in \mathbb{R}$ and discrete series.
- Spurious poles of continuous series cancel against contributions from discrete series partial waves [Maldacena Stanford], [Simmons-Duffin, Stanford, Witten]

■ Try to factorize CCFT 4pt function conformal block coefficients into $c_{\phi \phi}^{2} \mathcal{O} / d_{\mathcal{O}}$

- Works for single trace tower. Must sum over both but have resonances $M_{ \pm}^{2}$ with their distinct 3pt couplings $g_{ \pm}^{2}$
- Double trace operators do not factorize

Fin

