DUALITY DEFECTS IN E_8

FOR GLOBAL CATEGORICAL SYMMETRIES (GONG SHOW)

JUSTIN KULP WITH I. BURBANO & J. NEUSER

PERIMETER INSTITUTE FOR THEORETICAL PHYSICS

07/JUN/2022

WHAT ARE DUALITY DEFECTS?

Symmetry defects for a symmetry group *A* are modeled by the fusion category Vec_{*A*} [Bhardwaj, Tachikawa].

$$X_g$$
 $X_h \Rightarrow X_{gh}$

- Duality defects are non-invertible topological defect lines which separate a theory from the gauged theory in (1+1)d
 - A duality defect N enriches this fusion category of symmetry defects with one additional line N

$$X_g \otimes \mathcal{N} = \mathcal{N} = \mathcal{N} \otimes X_g \tag{1}$$

$$\mathcal{N} \otimes \mathcal{N} = \bigoplus_{g} X_{g}$$
 (2)

- ► This is a Tambara-Yamagami category [Tambara, Yamagami].
- Best example is the Kramers-Wannier defect in the Ising.

$$X_1 = \text{Identity}, \quad X_{\epsilon} = \mathbb{Z}_2 \text{ Line}, \quad X_{\sigma} = \text{Duality Line}, \quad (3)$$

How do we study duality defects?

Study duality defects via Verlinde lines or fermionization.

- 1. Verlinde Lines. X_{σ} line in the Ising CFT can be understood as one of the 3 simple anyons in the Ising TFT brought to boundary [Fröhlich, Fuchs, Runkel, Schweigert].
- 2. **Fermionization**. \mathbb{Z}_2 duality defect lines can be understood as GSO projection (bosonization) of chiral fermion parity $(-1)^{F_L}$ line in a fermionic theory [Thorngren]. E.g. Ising CFT, Monster CFT [Lin, Shao].
- Consider the **chiral** *E*₈ **theory**.
 - Theory with 8 independent chiral bosons aⁱ and a vertex operator Γ_α for each α in the E₈ root lattice.
 - ► Aka chiral (E₈)₁ WZW model; E₈ lattice VOA; or boundary edge theory of Kitaev's E₈ phase.
 - Unique holomorphic theory with chiral central charge $c_L = 8$.
- Holomorphic $\Rightarrow \operatorname{Rep}(V)$ is trivial \Rightarrow no Verlinde lines.
- Also want to study non-anomalous \mathbb{Z}_m symmetries for m > 2.

How do we Classify Duality Defects?

To classify \mathbb{Z}_m duality defects:

1. Pick a non-anomalous \mathbb{Z}_m symmetry. The uncharged operators form a sub-VOA

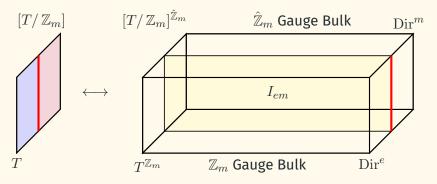
$$V^{\mathbb{Z}_m} \subset V \tag{4}$$

2. \mathbb{Z}_m -twisted Hilbert spaces of V decompose over $Irr(V^{\mathbb{Z}_m})$.

	$ [V/\mathbb{Z}_m]$	$[V/\mathbb{Z}_m]^1$		$[V/\mathbb{Z}_m]^{m-1}$
V	$egin{array}{c} \mathcal{H}^0_0 \ \mathcal{H}^0_1 \end{array}$	\mathcal{H}_0^1		$egin{array}{l} \mathcal{H}_0^{m-1} \ \mathcal{H}_1^{m-1} \end{array}$
V_1	\mathcal{H}_1^0	\mathcal{H}_1^1	•••	\mathcal{H}_1^{m-1}
:	:	:	·	•
V_{m-1}	\mathcal{H}_{m-1}^0	\mathcal{H}_{m-1}^1	•••	\mathcal{H}_{m-1}^{m-1}

3. Find all order two automorphisms of $V^{\mathbb{Z}_m}$ which "swap the axes" corresponding to V and its orbifold in the table.

WHY DOES THAT WORK?



In (2+1)d, can couple V to \mathbb{Z}_m gauge theory bulk.

- ► V and [V/ Z_m] live on different sides of electric-magnetic duality interface [Freed, Teleman], [Gaiotto, JK], [Kaidi's Talk Yesterday!].
- \mathcal{N} is a twist-line for the \mathbb{Z}_2 -symmetry of the bulk TFT.
- Can also couple to $\mathcal{Z}(TY(\mathbb{Z}_m))$ -bulk.
 - Pictures are related by gauging \mathbb{Z}_2^{em} symmetry.

Tambara-Yamagami Actions on Holomorphic VOAs

Let V be a holomorphic VOA. The inclusion $(V^{\mathbb{Z}_m})^{\mathbb{Z}_2} \subset V$ corresponds to a \mathbb{Z}_m Tambara-Yamagami action on V when the \mathbb{Z}_2 action swaps the axes of the metric Abelian group $\operatorname{Irr}(V^{\mathbb{Z}_m})$.

$$Z_V[0, \mathcal{N}_{\hat{\sigma}}] = \operatorname{tr}_{V^G} \hat{\sigma} q^{L_0 - \frac{c}{24}} \,. \tag{5}$$

- Compute all \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 , and \mathbb{Z}_5 TY actions on E_8 theory.
 - Compute their twisted partition functions.
 - Check \mathbb{Z}_2 results against answer from fermionization.
 - Check \mathbb{Z}_3 defect against conformal inclusion with Potts CFT.
- Additional associator data for the Tambara-Yamgami category. A lot of physical data!
- Opportunities to study triality defects since $\mathfrak{so}_8 \subseteq \mathfrak{e}_8$.

