

Justin Kulp. Based on work with I. M. Burbano and Jonas Neuser.

Perimeter Institute and University of Waterloo

The chiral E_8 theory V_{E_8} is the unique holomorphic CFT with central charge $c_L = 8$ and $c_R = 0$. • Aka E_8 lattice VOA or chiral $(E_8)_1$ WZW model

• Boundary edge theory of Kitaev's E_8 phase

Constructing the E_8 Theory

1 Start with the 8 dimensional E_8 lattice L_{E_8} . **2** For every vector $\alpha \in L_{E_8}$, we have a state $|\alpha\rangle$

Classification and Construction

From fusion rules, we see if we encircle a local operator $\mathcal{N}\left(\begin{array}{c}\mathcal{O}\\\bullet\end{array}\right) = \begin{cases} \pm\sqrt{m}\mathcal{O} & \text{if }\mathcal{O} \text{ is uncharged} \\ 0 & \text{if }\mathcal{O} \text{ is charged} \end{cases}$

• So, for example, a **twisted partition function** is

$$Z_{V_{E_8}}[0,\mathcal{N}] \sim \sum_{\text{uncharged}} \stackrel{?}{\pm}_{\mathcal{O}} |\chi_{\mathcal{O}}|^2 \qquad (8)$$

• Idea: Track this sign as an additional \mathbb{Z}_2 -twist acting on the invariant/shared subsector of $V_{E_8} \cap [V_{E_8}/G] = V_{E_8}^G$

A (2+1)d TFT Interpretation

Gauging 2d theories has a (2+1)d interpretation in terms of topological gauge theories [GK]

1 A 2d theory T with a \mathbb{Z}_m symmetry gives an "enriched Neumann" boundary condition B[T] for a (2+1)d \mathbb{Z}_m Dijkgraaf-Witten theory

- **2** T and $[T/\mathbb{Z}_m]$ can be obtained by compactifying a segment with different boundary conditions.
- The original theory $T = {}_{B[T]}[0,1]_{\text{Dir.}}$
- The gauged theory $[T/\mathbb{Z}_m] = {}_{B[T]}[0,1]_{\text{Neu.}}$

created by the vertex operator Γ_{α} . By definition $\langle \alpha | \beta \rangle = \delta_{\alpha\beta}$. Also

 $\Gamma_{\alpha}\Gamma_{\beta} = \epsilon(\alpha,\beta)\Gamma_{\alpha+\beta}$

(1)

(2)

(3)

(4)

(6)

(7)

3 For **each root** we get a free **independent boson**, whose modes satisfy the commutation relations

 $[a_m^i, a_n^j] = m\delta^{ij}\delta_{m+n,0}.$

• Together they satisfy

 $a_n^i |\alpha\rangle = 0, \quad \text{if } n > 0, ,$ $a_0^i | \alpha \rangle = \alpha^i | \alpha \rangle$.

Duality Defects

Duality defects are non-invertible topological defect lines which separate a theory from a dual theory.

• In our case, they are self-duality defects (analogous to **Kramers-Wannier** duality defect in Ising model) describing the isomorphism to a gauged theory

Duality Defect Construction

- To compute the \mathbb{Z}_m -duality defected partition function with \mathcal{N} twisting Euclidean time $Z_{V_{E_{\circ}}}[0,\mathcal{N}]$:
- **1** Find all (conjugacy classes of) \mathbb{Z}_m automorphisms of the E_8 Lie algebra by Kac's Theorem.
 - Compute which symmetries of V are non-anomalous and thus can actually be gauged.
 - Note: there may be multiple \mathbb{Z}_m conjugacy classes of non-anomalous symmetries
- 2 Pick a non-anomalous symmetry group $G \cong \mathbb{Z}_m$, the fixed-point sub-VOA $V_{E_8}^G$ is the lattice VOA of uncharged vertex operators from $(L_{E_8})^G$ • The irreps $A := \operatorname{Irr}(V_{E_8}^G)$ form a metric Abelian group (A, h), with $A \cong \mathbb{Z}_m \times \mathbb{Z}_m$ and metric function h(i, j) = ij/m. • V_{E_8} and $[V_{E_8}/G]$ decompose over the isotropic subgroups along the axes with irrep labels (i, 0) and (0, j) respectively, 1.e.

$$V_{E_8} = \bigoplus_{i \in \text{Electric}} \mathcal{H}_0^i, \qquad (9)$$
$$V_{E_8}/G] = \bigoplus \mathcal{H}_i^0. \qquad (10)$$

(9)

- **3** The Dirichlet and Neumann boundary conditions of the \mathbb{Z}_m gauge theory are related by a \mathbb{Z}_2^{em} 0-form symmetry of the bulk TFT.
 - Also called **electric-magnetic duality**
 - Corresponds to a codimension-1 interface I_{em} in the TFT.

In (2+1)d, a **duality defect** becomes the endpoint (a) twist-line) of an electric-magnetic duality interface I_{em} in the bulk

• The theory with \mathcal{N} inserted can be blown up to a slab of electric and magnetic \mathbb{Z}_m gauge theory separated by the duality interface

 $[T/\mathbb{Z}_m]^{\mathbb{Z}_m}$ $\hat{\mathbb{Z}}_m$ Gauge Bulk Dir^m $[T/\mathbb{Z}_m]$

$V_{E_8} \cong [V_{E_8} / \mathbb{Z}_m]$ (5)• Minimally enriches group-like fusion defect lines with

- $X_q \otimes \mathcal{N} = \mathcal{N} = \mathcal{N} \otimes X_q$ $\mathcal{N} \otimes \mathcal{N} = \bigoplus X_g$
- This is a Tambara-Yamagami category [TY]

Why Duality Defects?

- Archetypal non-invertible symmetry defect; requiring full formalism of fusion category symmetry.
- Provide constraints on RG flows (e.g. Ising Kramers-Wannier defect) [CLSWY, GK, TW]. Fusion category "rigidity" generalizes 't Hooft anomaly matching.
- Constrain modular bootstrap e.g. spin-selection rules constrain CFT spectrum **[CLSWY]**.
- Constraints for quantum gravity; **no global** categorical symmetries in quantum gravity.

 $j \in Magnetic$ ³ Finding automorphisms of $V_{E_8}^G$ which "swap the axes" corresponding to V_{E_8} and $[V_{E_8}/G]$ in A, we obtain the defected partition functions as the twisted characters for this second automorphism.

> $Z_{V_{E_8}}[0,\mathcal{N}_{\hat{\sigma}}] = \operatorname{tr}_{V_{E_8}^G} \hat{\sigma} q^{L_0 - \frac{c}{24}}.$ (11)

$\mathbb{E}_{\times} \mathbb{Z}_2$ Tambara-Yamagami Symmetries

- There are two \mathbb{Z}_2 symmetries of E_8 up to conjugacy. One is non-anomalous and leaves a D_8 invariant, the other is anomalous leaving $A_1 \times E_7$ invariant.
- From the Dynkin diagram, we see that there are two ways to extend the D_8 lattice to an E_8 lattice. One corresponds to the original V_{E_8} theory, the other to its orbifold $[V_{E_8}/\mathbb{Z}_2]$.

• These E_8 's are swapped by the lattice automorphism σ . • The lattice automorphism σ has 4-lifts to \mathbb{Z}_2 automorphisms

- Can gauge the \mathbb{Z}_2^{em} 0-form symmetry generated by the duality wall I_{em} , with Neumann boundary conditions for \mathbb{Z}_2^{em} on the left and Dirichlet on the right.
 - This makes the duality wall I_{em} "become invisible," leaving a $\mathcal{Z}(\mathrm{TY}(\mathbb{Z}_m))$ bulk.
 - We can gauge the emergent 1-form symmetry, i.e. **anyon condensation**, to go back to \mathbb{Z}_m gauge theory.

• Modeling inhomogeneities in statistical physics.

Additional Highlights from our Paper

- Review of LVOAs and contemporary results for enumerating their symmetries.
- Check our claims with: **fermionization** and mod 8 anomaly for \mathbb{Z}_2 ; embedding Potts model for \mathbb{Z}_3 .
- Computer algorithm for enumerating duality defects and their partition functions
- More **associator data** for the TY categories
- A (2+1)d perspective on orbifolds and duality defects • Proof for TY-line classification

of the VOA, so there are $4 \mathbb{Z}_2$ Tambara-Yamaqami lines!

Tambara-Yamagami Actions on Holomorphic VOAs

Let V be a holomorphic VOA. The inclusion $(V^{\mathbb{Z}_m})^{\mathbb{Z}_2} \subset V$ corresponds to a \mathbb{Z}_m Tambara-Yamagami action on V when the \mathbb{Z}_2 action swaps the axes of the metric Abelian group $\operatorname{Irr}(V^{\mathbb{Z}_m})$.

Paper and Further References

Poster based on "Duality Defects in E_8 " by I. M. Burbano, Justin Kulp, and Jonas Neuser

[CLSWY] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin, Topological defect lines and renormalization group flows in two dimensions, arXiv:1802.04445

[GK] D. Gaiotto and JK, *Orbifold groupoids*, arXiv:2008.05960. **[TW]** R. Thorngren and Y. Wang, *Fusion Category Symmetry I: Anomaly* In-Flow and Gapped Phases, arXiv:1912.02817.

[TY] D. Tambara and S. Yamagami, *Tensor categories with fusion rules of* self-duality for finite abelian groups, Journal of Algebra 209 (1998), no. 2 692-707