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HOLOMORPHIC QFTS AND HOLOMORPHIC TWISTS

m Holomorphic QFTs depend only on the complex structure of
the underlying manifold [Johansen], [Nekrasov], [Costello], [Williams], ... .
> Local operators carry structure of a Holomorphic
Factorization Algebra [Costello, Gwilliam].

> Example. 2d Chiral Algebra and/or Vertex Algebra
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m Given any SQFT, we obtain the Holomorphic Twist by taking
cohomology of any one nilpotent supercharge, e.g. Q := Q_
» Anti-holomorphic translations are Q-exact, so twisted theory
is (cohomologically) holomorphic
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» Infinite dimensional symmetry enhancements analogous to
Virasoro and Kac-Moody [Gwilliam, Williams].
» Deformation ~~ [Beem, Lemos, Liendo, Peelaers, Raselli, van Rees]



HOLOMORPHIC QFTS AND HOLOMORPHIC TWISTS

m Holomorphic QFTs depend only on the complex structure of
the underlying manifold [Johansen], [Nekrasov], [Costello], [Williams], ... .
> Local operators carry structure of a Holomorphic
Factorization Algebra [Costello, Gwilliam].

> Example. 2d Chiral Algebra and/or Vertex Algebra

m Given any SQFT, we obtain the Holomorphic Twist by taking
cohomology of any one nilpotent supercharge, e.g. Q := Q_
» Anti-holomorphic translations are Q-exact, so twisted theory
is (cohomologically) holomorphic

{Q,Qa} =0z (1)

» Infinite dimensional symmetry enhancements analogous to
Virasoro and Kac-Moody [Gwilliam, Williams].

» Deformation ~~ [Beem, Lemos, Liendo, Peelaers, Raselli, van Rees]

m Operators captured by holomorphic twist are those counted
by superconformal index [saberi, williams]

T = Te(—1)F pirtia=—r/2gin—sa—r/2,-B{Q-,57} ()



HIGHER BRACKETS AND HOMOTOPY TRANSFER

m Theories are equipped with local product called \-Bracket

{01,002} = 723 eM*d*z O1(z,2) 02(0) (3)

> Higher brackets describe homotopy between lower brackets
{01,05,..., 0041 0,00 (4)
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m Polynomials in fields and derivatives ~~ Free Cohomology V
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free-classical theory V as cohomology of a new operator
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where Q,, is computed by n-loop Feynman diagrams.
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m Polynomials in fields and derivatives ~~ Free Cohomology V
> Interacting quantum theory is obtained from underlying
free-classical theory V as cohomology of a new operator

Q=Q+Q1+Q2.... (5)
where Q,, is computed by n-loop Feynman diagrams.

m All perturbative corrections are contained in the higher
brackets of the free holomorphic factorization algebra!

QO = {I, 0}0 + {I,I, 0}070 + {I,Z,I, 0}07070 + ... (6)
> [Tree-levell ~1Z, [1-Loop] ~2Z's, etc.



FEYNMAN DIAGRAMS AND BOOTSTRAP

m Feynman diagrams in theory must be Laman graphs.

A\ <> B> A X

> Arbitrary integral takes the form:
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m Feynman diagrams in theory must be Laman graphs.

A\ <> B> A X

> Arbitrary integral takes the form:
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e€l'y vely
m Change of variables maps integral to Fourier transform of a
polytope in space of holomorphic loop momenta. The
Holohedron?

> Configuration spaces of graphs satisfy infinite collection of
geometric quadratic identities; enforcing associativity

ZO’(F,S)IF[S][A-FaZ/;Z] IF(S)[)\/;Z/] =0. (8)
S

m Find that quadratic identities are sufficient to bootstrap
Feynman integrals to at least 3-loops (perhaps further!)
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