Holomorphic QFTs: Higher Structures and Bootstrap

 STRINGS 2022Justin Kulp
with Kasia Budzik, Davide Gaiotto, Brian Williams, JingXiang Wu and Matthew Yu.

Perimeter Institute for
Theoretical Physics
21/JUL/2022

Holomorphic QFTs and Holomorphic Twists

■ Holomorphic QFTs depend only on the complex structure of the underlying manifold [Johansen], [Nekrasov], [Costello], [williams],

- Local operators carry structure of a Holomorphic Factorization Algebra [Costello, Gwilliam].
- Example. 2d Chiral Algebra and/or Vertex Algebra

Holomorphic QFTs and Holomorphic Twists

■ Holomorphic QFTs depend only on the complex structure of the underlying manifold [Johansen], [Nekrasov], [Costello], [williams],

- Local operators carry structure of a Holomorphic Factorization Algebra [Costello, Gwilliam].
- Example. 2d Chiral Algebra and/or Vertex Algebra

■ Given any SQFT, we obtain the Holomorphic Twist by taking cohomology of any one nilpotent supercharge, e.g. $Q:=Q_{-}$

- Anti-holomorphic translations are Q-exact, so twisted theory is (cohomologically) holomorphic

$$
\begin{equation*}
\left\{Q, \bar{Q}_{\dot{\alpha}}\right\}=\partial_{\bar{z}^{\dot{\alpha}}} \tag{1}
\end{equation*}
$$

- Infinite dimensional symmetry enhancements analogous to Virasoro and Kac-Moody [Gwilliam, williams].
- Deformation \rightsquigarrow [Beem, Lemos, Liendo, Peelaers, Raselli, van Rees]

Holomorphic QFTs and Holomorphic Twists

- Holomorphic QFTs depend only on the complex structure of the underlying manifold [Johansen], [Nekrasov], [Costello], [williams],
- Local operators carry structure of a Holomorphic Factorization Algebra [Costello, Gwilliam].
- Example. 2d Chiral Algebra and/or Vertex Algebra

■ Given any SQFT, we obtain the Holomorphic Twist by taking cohomology of any one nilpotent supercharge, e.g. $Q:=Q_{-}$

- Anti-holomorphic translations are Q-exact, so twisted theory is (cohomologically) holomorphic

$$
\begin{equation*}
\left\{Q, \bar{Q}_{\dot{\alpha}}\right\}=\partial_{\bar{z}^{\dot{\alpha}}} \tag{1}
\end{equation*}
$$

- Infinite dimensional symmetry enhancements analogous to Virasoro and Kac-Moody [Gwilliam, williams].
- Deformation \rightsquigarrow [Beem, Lemos, Liendo, Peelaers, Raselli, van Rees]

■ Operators captured by holomorphic twist are those counted by superconformal index [Saberi, williams]

$$
\begin{equation*}
\mathcal{I}=\operatorname{Tr}(-1)^{F} p^{j_{1}+j_{2}-r / 2} q^{j_{1}-j_{2}-r / 2} e^{-\beta\left\{Q_{-}, S^{-}\right\}} \tag{2}
\end{equation*}
$$

Higher Brackets and Homotopy Transfer

■ Theories are equipped with local product called λ-Bracket

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}\right\}_{\lambda}=\oint_{S^{3}} e^{\lambda \cdot z} d^{2} z \mathcal{O}_{1}(z, \bar{z}) \mathcal{O}_{2}(0) \tag{3}
\end{equation*}
$$

- Higher brackets describe homotopy between lower brackets

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{n+1}\right\}_{\lambda_{1}, \ldots, \lambda_{n}} \tag{4}
\end{equation*}
$$

Higher Brackets and Homotopy Transfer

■ Theories are equipped with local product called λ-Bracket

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}\right\}_{\lambda}=\oint_{S^{3}} e^{\lambda \cdot z} d^{2} z \mathcal{O}_{1}(z, \bar{z}) \mathcal{O}_{2}(0) \tag{3}
\end{equation*}
$$

- Higher brackets describe homotopy between lower brackets

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{n+1}\right\}_{\lambda_{1}, \ldots, \lambda_{n}} \tag{4}
\end{equation*}
$$

■ Polynomials in fields and derivatives \rightsquigarrow Free Cohomology \mathcal{V}

- Interacting quantum theory is obtained from underlying free-classical theory \mathcal{V} as cohomology of a new operator

$$
\begin{equation*}
\mathbf{Q}=Q_{0}+Q_{1}+Q_{2} \ldots \tag{5}
\end{equation*}
$$

where Q_{n} is computed by n-loop Feynman diagrams.

Higher Brackets and Homotopy Transfer

■ Theories are equipped with local product called λ-Bracket

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}\right\}_{\lambda}=\oint_{S^{3}} e^{\lambda \cdot z} d^{2} z \mathcal{O}_{1}(z, \bar{z}) \mathcal{O}_{2}(0) \tag{3}
\end{equation*}
$$

- Higher brackets describe homotopy between lower brackets

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{n+1}\right\}_{\lambda_{1}, \ldots, \lambda_{n}} \tag{4}
\end{equation*}
$$

■ Polynomials in fields and derivatives \rightsquigarrow Free Cohomology \mathcal{V}

- Interacting quantum theory is obtained from underlying free-classical theory \mathcal{V} as cohomology of a new operator

$$
\begin{equation*}
\mathbf{Q}=Q_{0}+Q_{1}+Q_{2} \ldots \tag{5}
\end{equation*}
$$

where Q_{n} is computed by n-loop Feynman diagrams.
$■$ All perturbative corrections are contained in the higher brackets of the free holomorphic factorization algebra!

$$
\begin{equation*}
\mathbf{Q} \mathcal{O}=\{\mathcal{I}, \mathcal{O}\}_{0}+\{\mathcal{I}, \mathcal{I}, \mathcal{O}\}_{0,0}+\{\mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{O}\}_{0,0,0}+\ldots \tag{6}
\end{equation*}
$$

- [Tree-level] $\sim 1 \mathcal{I},[1$-Loop $] \sim 2 \mathcal{I}$'s, etc.

FEYNMAN DIAGRAMS AND BOOTSTRAP

■ Feynman diagrams in theory must be Laman graphs.

- Arbitrary integral takes the form:

$$
\begin{equation*}
\mathcal{I}_{\Gamma}[\lambda ; z] \equiv \int_{\mathbb{R}^{4} \mathbb{\Gamma}_{0} \mid-4} \bar{s}\left[\prod_{\varepsilon \in \Gamma_{1}} \mathcal{P}\left(x_{e_{0}}-x_{e_{1}}+z_{e}, \bar{x}_{e_{0}}-\bar{x}_{\left.e_{e}\right)}\right)\right]\left[\prod_{v \in \Gamma_{0}} e^{\lambda_{v} \cdot x_{v}} d^{2} x_{v}\right] \tag{7}
\end{equation*}
$$

FEYNMAN DIAGRAMS AND BOOTSTRAP

■ Feynman diagrams in theory must be Laman graphs.

- Arbitrary integral takes the form:

$$
\begin{equation*}
\mathcal{I}_{\Gamma}[\lambda ; z] \equiv \int_{\mathbb{R}^{4\left|\Gamma_{0}\right|-4}} \bar{\partial}\left[\prod_{e \in \Gamma_{1}} \mathcal{P}\left(x_{e_{0}}-x_{e_{1}}+z_{e}, \bar{x}_{e_{0}}-\bar{x}_{e_{1}}\right)\right]\left[\prod_{v \in \Gamma_{0}^{\prime}} e^{\lambda_{v} \cdot x_{v}} d^{2} x_{v}\right] \tag{7}
\end{equation*}
$$

- Change of variables maps integral to Fourier transform of a polytope in space of holomorphic loop momenta.

FEYNMAN DIAGRAMS AND BOOTSTRAP

■ Feynman diagrams in theory must be Laman graphs.

- Arbitrary integral takes the form:

$$
\begin{equation*}
\mathcal{I}_{\Gamma}[\lambda ; z] \equiv \int_{\mathbb{R}^{4\left|\Gamma_{0}\right|-4}} \bar{\partial}\left[\prod_{e \in \Gamma_{1}} \mathcal{P}\left(x_{e_{0}}-x_{e_{1}}+z_{e}, \bar{x}_{e_{0}}-\bar{x}_{e_{1}}\right)\right]\left[\prod_{v \in \Gamma_{0}^{\prime}} e^{\lambda_{v} \cdot x_{v}} d^{2} x_{v}\right] \tag{7}
\end{equation*}
$$

■ Change of variables maps integral to Fourier transform of a polytope in space of holomorphic loop momenta. The Holohedron?

FEYNMAN DIAGRAMS AND BOOTSTRAP

■ Feynman diagrams in theory must be Laman graphs.

- Arbitrary integral takes the form:

$$
\begin{equation*}
\mathcal{I}_{\Gamma}[\lambda ; z] \equiv \int_{\mathbb{R}^{4}\left|\Gamma_{0}\right|-4} \overline{\bar{d}}\left[\prod_{e \in \Gamma_{1}} \mathcal{P}\left(x_{e_{0}}-x_{e_{1}}+z_{e}, \bar{x}_{e_{0}}-\bar{x}_{e_{1}}\right)\right]\left[\prod_{v \in \Gamma_{0}^{\prime}} e^{\lambda_{v} \cdot x_{v}} d^{2} x_{v}\right] \tag{7}
\end{equation*}
$$

■ Change of variables maps integral to Fourier transform of a polytope in space of holomorphic loop momenta. The Holohedron?

- Configuration spaces of graphs satisfy infinite collection of geometric quadratic identities; enforcing associativity

$$
\begin{equation*}
\sum_{S} \sigma(\Gamma, S) \mathcal{I}_{\Gamma[S]}\left[\lambda+\partial_{z^{\prime}} ; z\right] \mathcal{I}_{\Gamma(S)}\left[\lambda^{\prime} ; z^{\prime}\right]=0 \tag{8}
\end{equation*}
$$

FEYNMAN DIAGRAMS AND BOOTSTRAP

- Feynman diagrams in theory must be Laman graphs.

- Arbitrary integral takes the form:

$$
\begin{equation*}
\mathcal{I}_{\Gamma}[\lambda ; z] \equiv \int_{\mathbb{R}^{4\left|\Gamma_{0}\right|-4}} \bar{\partial}\left[\prod_{e \in \Gamma_{1}} \mathcal{P}\left(x_{e_{0}}-x_{e_{1}}+z_{e}, \bar{x}_{e_{0}}-\bar{x}_{e_{1}}\right)\right]\left[\prod_{v \in \Gamma_{0}^{\prime}} e^{\lambda_{v} \cdot x_{v}} d^{2} x_{v}\right] \tag{7}
\end{equation*}
$$

■ Change of variables maps integral to Fourier transform of a polytope in space of holomorphic loop momenta. The Holohedron?

- Configuration spaces of graphs satisfy infinite collection of geometric quadratic identities; enforcing associativity

$$
\begin{equation*}
\sum_{S} \sigma(\Gamma, S) \mathcal{I}_{\Gamma[S]}\left[\lambda+\partial_{z^{\prime}} ; z\right] \mathcal{I}_{\Gamma(S)}\left[\lambda^{\prime} ; z^{\prime}\right]=0 \tag{8}
\end{equation*}
$$

■ Find that quadratic identities are sufficient to bootstrap Feynman integrals to at least 3-loops (perhaps further!)

Fin

