PERIMETER wstivit

Holomorphic QFTs

Holomorphic QFTs depend only on the complex structure of the underlying spacetime manifold.

- Local operators endowed with structure of a holomorphic factorization algebra [CG12]
- No UV divergences at one-loop.

Ex. Toy Example: 2d Chiral Algebra

- Free theories are clearly holomorphic due to the factorization of the 2 d wave equation $\partial \bar{\partial} X(z, \bar{z})=0$
- Closure of chiral OPE means (relative) holomorphic position dependence persists at the quantum level
- Holomorphic factorization algebras provide higher analogues of 2 d vertex/chiral algebra structures!

Holomorphic Twists

Given any SUSY QFT, we perform the holomorphic twist by passing to cohomology of one nilpotent supercharge; $Q:=Q_{-}$for example [Joh].

- Anti-holomorphic translations are Q-exact; so the twisted theory is holomorphic in cohomology:

$$
\begin{equation*}
\left\{Q, \bar{Q}_{\dot{\alpha}}\right\}=\partial_{\bar{z}^{a}} \tag{1}
\end{equation*}
$$

- In BV-BRST formalism, simply deform BRST differential d by Q and take the cohomology with respect to

$$
\begin{equation*}
d_{Q}=d+Q . \tag{2}
\end{equation*}
$$

- Different choices of twisting Q are captured by the nilpotence variety. For $4 d \mathcal{N}=1$, these are choices of complex structure on \mathbb{C}^{2} [IW1].

But Why (Holomorphically) Twist?

- Generally, twists restrict space of physical observables to more tractable BPS subset.
- Compute protected quantities and probe dualities.
- The holomorphic twist is:
- Widely Available. Need only an even dimensional theory and a nontrivial Maurer-Cartan element.
- Least Forgetful. All other twists can be obtained by further deformation of holomorphic twist
Top. Twist \subset Holo. Twist \subset SUSY QFT
- Operators captured by holomorphic twist are those counted by superconformal index [IW2].

$$
\begin{equation*}
\mathcal{I}=\operatorname{Tr}(-1)^{F} p^{j_{1}+j_{2}-r / 2} q^{j_{1}-j_{2}-r / 2} e^{-\beta\left\{Q_{-,} S^{-}\right\}} \tag{4}
\end{equation*}
$$

- Infinite dimensional L_{∞} symmetry enhancements for global symmetries, analogous to 2d Virasoro and Kac-Moody
- "Higher Virasoro" has two central charges, corresponding to a and c anomalies of original 4d CFT.

Holomorphic Descent

In twisted theory, identify superspace coordinates $\bar{\theta}^{\dot{\alpha}} \sim d \bar{z}^{\dot{\alpha}}$, so superfields are $(0, *)$-Dolbeault forms. - Components of $(0, *)$-form \mathcal{O} are obtained from $(0,0)$-form $\mathcal{O}^{(0)}$ by holomorphic descent $\mathcal{O}[\bar{\theta}]=e^{\bar{\theta}^{\dot{\alpha}} \bar{Q}_{\dot{\alpha}}} \mathcal{O}^{(0)}=\mathcal{O}^{(0)}+\mathcal{O}^{(1)}+\mathcal{O}^{(2)}$

- Call a superfield semi-chiral if

$$
\begin{equation*}
(Q+\bar{\partial}) \mathcal{O}=0 \tag{6}
\end{equation*}
$$

- Descendants $\mathcal{O}^{(k)}$ satisfy descent equations

$$
Q \mathcal{O}^{(k)}+\bar{\partial} \mathcal{O}^{(k-1)}=0
$$

Infinite Symmetries

Obtain large family of symmetries by integrating a semi-chiral \mathcal{O} against any $\rho \in H_{\bar{\partial}}^{2, *}\left(\mathbb{C}^{2}-0\right)$ to obtain analogue of modes in 2d vertex algebra:

$$
\begin{equation*}
\hat{\mathcal{O}}_{\rho}=\oint_{S^{3}} \rho \wedge \mathcal{O} \tag{8}
\end{equation*}
$$

- $H_{\bar{\partial}}^{2, *}\left(\mathbb{C}^{2}-0\right)$ is concentrated in degrees 0 and 1
${ }^{\circ} 0$ Has classes $\rho \sim z_{1}^{n} z_{2}^{m} d^{2} z$ where $n, m \geq 0$. These give analogues of non-negative modes $\hat{\mathcal{O}}_{n, m}$.
${ }^{\circ} 1$ Has classes $\rho \sim \partial_{z_{1}}^{n} \partial_{z_{2}}^{m} \omega_{\text {BM }}$ where $n, m \geq 0$ and $\omega_{\text {BM }}$ is the Bochner-Martinelli kernel (the free propagator).
These give analogues of negative modes $\hat{\mathcal{O}}_{-n-1,-m-1}$

The λ-Bracket

The non-negative modes above may be combined into a λ-Bracket (or secondary product):

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}\right\}_{\lambda}=\oint_{S^{3}} e^{\lambda \cdot z} d^{2} z \mathcal{O}_{1}(z, \bar{z}) \mathcal{O}_{2}(0) \tag{9}
\end{equation*}
$$

- Product is local: can shrink S^{3} without changing homology class of integration cycle [OY].
- λ can be viewed as a holomorphic momentum.
- We recover the collision product when $\lambda=0$.

Higher Brackets

The brackets we obtain endow the space of local operators with various algebraic structures: dga, dg Lie, Poisson etc. in cohomology.

- Existence of products is controlled by cycles in the configuration space of 2 points $\operatorname{Conf}_{\mathbb{C}^{2}}(2)$.
- Failure of these structures to survive at the level of chains can be measured by higher brackets

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{n+1}\right\}_{\lambda_{1}, \ldots, \lambda_{n}} \tag{10}
\end{equation*}
$$

- Higher brackets are controlled by $\operatorname{Conf}_{\mathbb{C}^{2}}(n)$ with $n>2$. - $(n+1)$-bracket describes homotopy between n-brackets

Ex. Lie Algebras and L_{∞}-Algebras

- An L_{∞} algebra is a dg Lie algebra where the Jacobi identity only has to hold up to homotopy.

From Free to Interacting

Deforming a free theory to an interacting one by the interaction \mathcal{I} changes the BRST differential; spoiling Q-closedness of certain operators.

- Homotopy Transfer. View $Q=Q_{\text {free }}+Q_{\text {int }}$ and compute Q-cohomology as cohomology of a differential acting on $Q_{\text {free-cohomology }} H_{\text {free }}$.

Perturbative Corrections

All perturbative corrections are contained in the free holomorphic factorization algebra!

- Take an operator \mathcal{O} in the $Q_{\text {free-cohomology }}$ and act with perturbative differential, we find perturbative corrections take the form of higher brackets of the free theory with \mathcal{I} :

$$
\begin{align*}
Q \mathcal{O} & =\{\mathcal{I}, \mathcal{O}\}_{0}+\{\mathcal{I}, \mathcal{I}, \mathcal{O}\}_{0,0} \\
& +\{\mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{O}\}_{0,0,0}+\ldots \tag{11}
\end{align*}
$$

- $[$ Tree-level $] \sim 1 \mathcal{I}$. [1-Loop] $\sim 2 \mathcal{I}$'s. etc.
- Deformations from higher Maurer-Cartan equation

Strategy: compute Feynman diagrams; obtain factorization algebra; deform by MC elements!

Bootstrapping from Laman Graphs
By counting form degrees, the Feynman graphs which contribute must be Laman graphs.

- Configuration spaces of graphs satisfy infinite collection of geometric quadratic identities; enforcing associativity graph-by-graph.

$$
\sum_{S} \sigma(\Gamma, S) \mathcal{I}_{\Gamma[S]}\left[\lambda+\partial_{z^{\prime}} ; z\right] \mathcal{I}_{\Gamma(S)}\left[\lambda^{\prime} ; z^{\prime}\right]=0
$$

- We find that symmetries and quadratic identities are sufficients to bootstrap Feynman integrals to at least 3-loops (perhaps further!)

A UV/IR-Finite Master Integral and Bootstrap

All perturbative corrections to brackets are obtained by evaluating the master integral:

$$
\begin{equation*}
\mathcal{I}_{\Gamma}[\lambda ; z] \equiv \int_{\mathbb{R}^{4\left|\Gamma_{0}\right|-4}} \bar{\partial}\left[\prod_{e \in \Gamma_{1}} \mathcal{P}\left(x_{e_{0}}-x_{e_{1}}+z_{e}, \bar{x}_{e_{0}}-\bar{x}_{e_{1}}\right)\right]\left[\prod_{v \in \Gamma_{0}^{\prime}} e^{\lambda_{v} \cdot x_{v}} d^{2} x_{v}\right] \tag{12}
\end{equation*}
$$

Allows for arbitrary holomorphic shifts z_{e}, allowing study of multi-local operators. Aforementioned quadratic identity allows recursive bootstrap calculation from 1-loop result!

Paper and Further References

Based on multiple coming works, to appear here:

For applications to pure $4 \mathrm{~d} \mathcal{N}=1 S U(N)$ gauge theory, holomorphic confinement, and a holographic realization in the topological B-model, see the poster by Kasia Budzik.

