Confinement and Holomorphic TwISTS OF $\mathcal{N}=1$ SYM

Simons Confinement Collaboration InAUGURAL WORKSHOP

JUSTIN KULP with Kasia Budzik, Davide Gaiotto, Brian Williams, JingXiang Wu and Matthew Yu.

Perimeter Institute for Theoretical Physics

10/SEP/2022
ARXIV:2207.14321, ARXIV:2210.XXXXX, ARXIV:221X.XXXXX

WHY SUPERSYMMETRY?

■ SUSY QFTs provide a rich, but tractable, collection of theories in which quantities are exactly computable or highly constrained; including phases of gauge theories

- Non-renormalization theorems [Sohnius, West], [Mandelstam], [Grisaru, Rocek, Siegel], [Seiberg], [Argyres, Plesser, Seiberg] ++
- Electric-magnetic duality [Montonen, Olive], Seiberg-Witten Theory [Seiberg, witten], Seiberg duality [Seiberg]

■ Insights from SUSY QFTs can tell us about the real world

- Directly or by studying SUSY breaking [Dine, Yu] ++
- Tells us which properties of $N_{f}=N_{c}=3$ are generic

Ex. Super QCD. $\mathcal{N}=1 S U\left(N_{c}\right)$ SYM with N_{f} flavors exhibits: theories with confinement and chiral symmetry breaking; confinement and no chiral symmetry breaking; strongly coupled IR CFTs... [Seiberg]

WHY TwIST?

■ The tractability of SUSY QFTs comes, in part, from the existence of various protected quantities

- Can be invariant under deformation of coupling constant
- Computable in different duality frames; probe NP physics

Ex. F-terms and chiral operators. Protected by two of the four supercharges. Constrain the space of supersymmetric vacua and deformations of the theories [Seiberg].
Ex. Superconformal index counts local operators with signs [Kinney, Maldacena, Minwalla, Suvrat], [Romelsberger], [Dolan, Osborn]

■ Twisting isolates these protected quantities [witten]

- The twisted theory is completely mathematically rigorous.

Goal

Explain some properties of holomorphic twists of SUSY QFTs, and the holomorphic confinement of $\mathcal{N}=1$ SYM.

From SUSY to the Holomorphic Twist

■ Supersymmetry enhances Poincaré symmetry

$$
\begin{align*}
\left\{Q_{\alpha}^{A}, \bar{Q}_{\dot{\beta} B}\right\} & =\delta_{B}^{A} P_{\alpha \dot{\beta}} \tag{1}\\
\left\{Q_{\alpha}^{A}, Q_{\beta}^{B}\right\} & =\left\{\bar{Q}_{\dot{\alpha} A}, \bar{Q}_{\dot{\beta} B}\right\}=0 \tag{2}
\end{align*}
$$

■ Given any SQFT, we obtain the Holomorphic Twist by taking cohomology of any one nilpotent supercharge, e.g. $Q:=Q_{-}$

$$
\begin{equation*}
Q^{2}=0, \quad Q \text {-Closed: }[Q, \mathcal{O}]=0, \quad Q \text {-Exact: }[Q, \Lambda] \tag{3}
\end{equation*}
$$

- Anti-holomorphic translations are Q-exact, so twisted theory is (cohomologically) holomorphic [Johansen], [Nekrasov], [costello]

$$
\begin{equation*}
\left\{Q, \bar{Q}_{\dot{\alpha}}\right\}=\partial_{\bar{z}^{\dot{\alpha}}} \tag{4}
\end{equation*}
$$

- Most available \& least forgetful twist: only needs $\mathcal{N}=1$ SUSY.

■ Operators captured by holomorphic twist are those counted by the superconformal index [Saberi, williams]

$$
\begin{equation*}
\mathcal{I}=\operatorname{Tr}(-1)^{F} p^{j_{1}+j_{2}-r / 2} q^{j_{1}-j_{2}-r / 2} e^{-\beta\left\{Q_{-}, S_{+}\right\}} \tag{5}
\end{equation*}
$$

Holomorphic QFTs

■ Holomorphic QFTs depend only on the complex structure of the underlying manifold [Johansen], [Nekrasov], [Costello], [williams], ++ .

- Local operators carry structure of a Holomorphic Factorization Algebra [Costello, Gwilliam].
- Example. 2d Chiral Algebra and/or Vertex Algebra

■ Infinite dimensional symmetry enhancements analogous to Virasoro and Kac-Moody [Gwilliam, williams].
■ Theories are equipped with local product called λ-Bracket

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}\right\}_{\lambda}=\oint_{S^{3}} e^{\lambda \cdot z} \mathcal{O}_{1}(z, \bar{z}) \mathcal{O}_{2}(0) d^{2} z \tag{6}
\end{equation*}
$$

- Higher brackets describe homotopy between lower brackets

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{n+1}\right\}_{\lambda_{1}, \ldots, \lambda_{n}} \tag{7}
\end{equation*}
$$

$■$ Stress: Statement about the OPE of a subsector of the original physical theory, not a deformed/modified theory.

AddING INTERACTIONS

■ Polynomials in fields and derivatives \rightsquigarrow Free Cohomology \mathcal{V}

- Interacting quantum theory is obtained from underlying free-classical theory \mathcal{V} as cohomology of a new operator

$$
\begin{equation*}
\mathbf{Q}=Q_{0}+Q_{1}+Q_{2} \ldots \tag{8}
\end{equation*}
$$

where Q_{n} is computed by n-loop Feynman diagrams.
■ In interacting quantum theory all perturbative corrections are contained in the higher brackets of the free holomorphic factorization algebra! [Budzik, Gaiotto, JK, Williams, Wu, Yu]

$$
\begin{align*}
& \mathrm{Q} \mathcal{O}=\{\mathcal{I}, \mathcal{O}\}_{0}+\{\mathcal{I}, \mathcal{I}, \mathcal{O}\}_{0,0}+\{\mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{O}\}_{0,0,0}+\ldots \tag{9}\\
&
\end{align*}
$$

FEYNMAN DIAGRAMS

■ Feynman diagrams are Laman graphs. [Budzik, Gaiotto, JK, Wu, Yu]

- Arbitrary holomorphic-topological twists in arbitrary dimensions are captured by generalized-Laman graphs [Kontsevich], [Gaiotto, Moore, Witten]
- Arbitrary integral takes the form:

$$
\begin{equation*}
\mathcal{I}_{\Gamma}[\lambda ; z] \equiv \int_{\mathbb{R}^{4} \mathrm{Tr}_{0} \mid-4} \overline{\bar{\rho}}\left[\prod_{\varepsilon \in \Gamma_{1}} \mathcal{P}\left(x_{e_{0}}-x_{e_{1}}+z_{e}, \bar{x}_{e_{0}}-\bar{x}_{\left.e_{e}\right)}\right)\right]\left[\prod_{v \in \Gamma_{0}} e^{\lambda_{v} \cdot x_{v} d^{2} x_{v}}\right] \tag{10}
\end{equation*}
$$

- Change of variables maps integral to Fourier transform of a polytope in loop momenta, the operatope.
- Feynman integrals satisfy infinite collection of geometric quadratic identities; enforcing associativity
- Can bootstrap all Feynman integrals from these identities.

TwISTING $\mathcal{N}=1 \mathbf{S Y M}$

■ $\mathcal{N}=1 \mathbf{S Y M}$ is $S U(N)$ gauge theory with an adjoint fermion

$$
\begin{equation*}
\mathcal{L}=\int d^{2} \theta \frac{-i}{8 \pi} \tau \operatorname{tr} W_{\alpha} W^{\alpha}+\text { c.c. } \tag{11}
\end{equation*}
$$

■ Twist is identified (in a non-trivial way) with a holomorphic bc System [Costello], [Elliot, Safronov, Williams], [Saberi, williams]

- Fields are collected in adjoint bosonic superfield b and (co)adjoint fermionic superfield c.
- The Lagrangian of this theory is

$$
\begin{equation*}
\mathcal{L}_{\text {twisted }}=\operatorname{Tr} b\left(\bar{\partial} c-\frac{1}{2}[c, c]\right)+\tau \operatorname{Tr} \partial_{\alpha} c \partial^{\alpha} c \tag{12}
\end{equation*}
$$

- Free cohomology

$$
\begin{equation*}
\mathbb{C}\left[b, \partial_{\alpha} b, \partial_{\alpha} \partial_{\beta} b, \ldots, \partial_{\alpha} c, \partial_{\alpha} \partial_{\beta} c, \ldots\right]^{G} \tag{13}
\end{equation*}
$$

- Derivative of the stress tensor is $\partial_{\alpha} S^{\alpha}=\partial_{\alpha} b_{A} \partial^{\alpha} c^{A}$.

Holomorphic Confinement

■ Adding one loop corrections, we find $\partial_{\alpha} S^{\alpha}=Q \operatorname{Tr} b^{2}$

- $\partial_{\alpha} S^{\alpha}$ generates (among other things) all the remaining spacetime symmetries.
- Exactness of $\partial_{\alpha} S^{\alpha}$ means local operators are invariant under remaining spacetime transformations.
- Theory becomes topological at one loon!
- Being topological is compatible with confinement: if topological in the UV, then topological in the IR.
- Constrains IR physics: the holomorphic twist of the IR must also be topological.
- We call this Holomorphic

Confinement [Budzik, Gaiotto, JK, Williams, $\mathrm{Wu}, \mathrm{Yu}]$
 bc System

Conclusion and Future Directions

Conclusion

SUSY QFTs are toy models for real world physics. Tractibility comes from protected quantities; isolated by the twist. These sectors have:

1. Infinite dimensional symmetry enhancements
2. Feynman diagrams which are completely bootstrappable
3. A novel UV manifestation of confinement

Future goals:
■ Super QCD. Twist has 4d $\operatorname{PSU}\left(N_{f} \mid N_{f}\right)$ Kac-Moody symmetry.
■ Seiberg Duality. Requires non-perturbative corrections.

- $\mathcal{N}=4$ SYM. Compute cohomology of $\frac{1}{16}$-BPS states.

Fin

