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(Quasicrystals

Quasicrystals are defined by their diffraction pat-
terns: reciprocal lattice is spanned by Z-linear com-
binations of >d basis vectors in d dimensions |LS].

e [n real space: finite translations and discrete
rotations almost overlap.

e [ momentum space: can possess classically
forbidden symmetries.

Fx. Diffraction Pattern of Al-Ni-Co [Hir]

e Classically forbidden 10-fold rotational symmetry.

e Below, the Bragg peaks should densely fill the plane.
The diffraction pattern is not completely white because
any real diffraction experiment has an IR cutoft.

How do I Make a Quasicrystal?

There are many ways to make a quasicrystal:

e Cut and Project. Take any regular lattice in
2d dimensions. Cut the lattice with a d
dimensional plane at an irrational angle.
Project all sites within an acceptance band onto
a d-dimensional surface.

e Local Matching Rules. Mark tiles with arrows
or colours, and match the patterns or colours
across tile edges (see below).

s

e Substitution (or Inflation/Deflation) Rules.
Start with a finite seed tiling and decimate each
tile into a collection of tiles in a prescribed way
(see above). Scale up the tiling. Repeat ad
Infinitum.

More: Ammann lines and de Bruijn’s grid method.

Decapods : Defects in Quasicrystals
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Penrose Tilings
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Penrose tilings are the most well-known quasicrys-
tals, with points of 10-fold symmetry |Gard|.

S

e There are an uncountable-oo of Penrose tilings.

e Penrose tilings are Locally Indistinguishable:
any finite sized patch of tiles in one Penrose tiling

can be found in any other.

Ammann Lines and LRO

Ammann lines (marked above) are one way to
construct a Penrose tiling: lines must be unbroken.

e [iquivalent to local matching rules.

e Ammann lines show long-range order in
quasicrystal: placing one tile forces a whole line
ot options along each Ammann line.

e Ammann lines form 5 intersecting 1d Fibonacci
quasicrystals = non-periodicity of Penrose tiles.

Defects from Local Rules

Placing tiles following local matching rules, it is pos-
sible to create a patch which cannot be extended to
cover all of R?.

e Highlights non-locality of quasicrystals again.
e No tile can fill the hole below.
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Charges 1in the Penrose Tiling

Treating the matching rules for the Penrose rhombs
as charges, we see that an imdividual Penrose tile
has no net charge.

e ivery simply connected patch of tiles has 0 net
and double-arrow charge.

Conway’s Decapods

Conway’s Decapods are detected Penrose tilings

e Central decagonal hole with infinitely long

worms (shaded green) radiating outwards.

e Any of the worms can be flipped to produce
another decapod defect. 2!V decapods.
® 62 decapods modulo rotations and flips.
® 61 of 62 are genuine defects (cannot be filled in).

e Defect decapods can be identified from Ammann
lines which do not match (blue) across the hole.
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The decapods are not simply connected, and so may

carry non-trivial charge
e Can accumulate non-zero net

Charge 10 ~ 1 Decapod  Charge 4 ~ 12 Decapods
Charge 8 ~ 1 Decapod  Charge 2 ~ 22 Decapods
Charge 6 ~ 5 Decapods Charge 0 ~ 21 Decapods

Conway’s Defect Conjecture

Every possible hole 1s equivalent to a decapod
hole by re-arranging tiles around the hole; taking
away or adding a finite number of pieces |Gard|.

Understanding Conway’s Conjecture

Decapods are evocative of other phenomena:

e Decapods have semi-infinite Ammann lines which
“miss’ each other; pinning them.

e Analogous to fractons?’

e Binary charge 1s not strong enough to distinguish
decapods. Is there a non-abelian charge that
can be assigned that will lift their degeneracy?

e No continuum description of decapods.



