PERIMETER INSTITUTE

Decapods : Defects in Quasicrystals Latham Boyle and Justin Kulp Perimeter Institute for Theoretical Physics

Quasicrystals

Quasicrystals are defined by their diffraction patterns: reciprocal lattice is spanned by Z-linear combinations of >d basis vectors in d dimensions [LS].

- In real space: finite translations and discrete rotations *almost* overlap.
- In momentum space: can possess **classically** forbidden symmetries.
- Ex. Diffraction Pattern of Al-Ni-Co [Hir]
 - Classically forbidden 10-fold rotational symmetry.
 - Below, the Bragg peaks should densely fill the plane.

Penrose Tilings

Charges in the Penrose Tiling

Treating the matching rules for the Penrose rhombs as charges, we see that an individual Penrose tile has no net charge.

• Every simply connected patch of tiles has 0 net single-arrow charge and double-arrow charge.

The diffraction pattern is not completely white because any real diffraction experiment has an IR cutoff.

How do I Make a Quasicrystal?

Penrose tilings are the most well-known quasicrystals, with points of 10-fold symmetry [Gard].

- There are an **uncountable-\infty** of Penrose tilings.
- Penrose tilings are Locally Indistinguishable: any finite sized patch of tiles in one Penrose tiling can be found in any other.

Ammann Lines and LRO

Ammann lines (marked above) are one way to construct a Penrose tiling: lines must be unbroken.

- Equivalent to local matching rules.
- Ammann lines show **long-range order** in quasicrystal: placing one tile forces a whole line of options along each Ammann line.

Conway's Decapods

Conway's Decapods are defected Penrose tilings

- Central decagonal hole with infinitely long worms (shaded green) radiating outwards.
- Any of the worms can be flipped to produce another decapod defect. 2^{10} decapods.
- 62 decapods modulo rotations and flips.
- 61 of 62 are genuine defects (cannot be filled in).
- Defect decapods can be identified from Ammann lines which do not match (blue) across the hole.

There are many ways to make a quasicrystal:

• Cut and Project. Take any regular lattice in 2d dimensions. Cut the lattice with a ddimensional plane at an **irrational angle**. Project all sites within an acceptance band onto a d-dimensional surface.

• Local Matching Rules. Mark tiles with arrows or colours, and match the patterns or colours

• Ammann lines form 5 intersecting 1d Fibonacci quasicrystals \Rightarrow non-periodicity of Penrose tiles.

Defects from Local Rules

Placing tiles following local matching rules, it is possible to create a patch which cannot be extended to cover all of \mathbb{R}^2 .

• Highlights non-locality of quasicrystals again. • No tile can fill the hole below.

The decapods are not simply connected, and so may carry non-trivial charge

• Can accumulate non-zero net single-arrow charge

Charge 10	$\sim 1 \text{ Decapod}$	Charge 4 \sim 12 Decapods
Charge 8	\sim 1 Decapod	Charge 2 \sim 22 Decapods
Charge 6	~ 5 Decapods	Charge 0 \sim 21 Decapods

Conway's Defect Conjecture

Every possible hole is equivalent to a decapod hole by re-arranging tiles around the hole; taking away or adding a finite number of pieces [Gard].

• Substitution (or Inflation/Deflation) Rules. Start with a finite seed tiling and decimate each tile into a collection of tiles in a prescribed way (see above). Scale up the tiling. Repeat ad infinitum.

More: Ammann lines and de Bruijn's grid method.

Further References

[Hir] K. Hiraga, F.J. Lincoln, W. Sun, Structure and Structural Change of Al-Ni-Co Decagonal Quasicrystal by High-Resolution Electron Microscopy, Materials Transactions, JIM, Vol. 32-4, 1991. [LS] D. Levine, P.J. Steinhardt, Quasicrystals. I. Definition and structure, Phys. Rev. B, Vol. 34-2, 1986.

[Jeong] H-C. Jeong, Growing Perfect Decagonal Quasicrystals by Local Rules, Phys. Rev. Lett., Vol. 98-13, 2007.

[Gard] M. Gardner, Penrose Tiles to Trapdoor Ciphers, CUP, 1997. [Stein] P.J. Steinhardt, The Search for Natural Quasicrystals, Center for Theoretical Science, Princeton University, 2012.

Understanding Conway's Conjecture

Decapods are evocative of other phenomena:

• Decapods have semi-infinite Ammann lines which "miss" each other; **pinning** them.

• Analogous to **fractons**?

• Binary charge is not strong enough to distinguish decapods. Is there a **non-abelian charge** that can be assigned that will lift their degeneracy? • No continuum description of decapods.