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Quasicrystals

Quasicrystals are defined by their diffraction pat-
terns: reciprocal lattice is spanned by Z-linear com-
binations of >d basis vectors in d dimensions [LS].

• In real space: finite translations and discrete
rotations almost overlap.

• In momentum space: can possess classically
forbidden symmetries.

Ex.Diffraction Pattern of Al-Ni-Co [Hir]
•Classically forbidden 10-fold rotational symmetry.
•Below, the Bragg peaks should densely fill the plane.

The diffraction pattern is not completely white because
any real diffraction experiment has an IR cutoff.

How do I Make a Quasicrystal?

There are many ways to make a quasicrystal:

•Cut and Project. Take any regular lattice in
2d dimensions. Cut the lattice with a d
dimensional plane at an irrational angle.
Project all sites within an acceptance band onto
a d-dimensional surface.

•Local Matching Rules. Mark tiles with arrows
or colours, and match the patterns or colours
across tile edges (see below).

•Substitution (or Inflation/Deflation) Rules.
Start with a finite seed tiling and decimate each
tile into a collection of tiles in a prescribed way
(see above). Scale up the tiling. Repeat ad
infinitum.

More: Ammann lines and de Bruijn’s grid method.

Penrose Tilings

Penrose tilings are the most well-known quasicrys-
tals, with points of 10-fold symmetry [Gard].

•There are an uncountable-∞ of Penrose tilings.
•Penrose tilings are Locally Indistinguishable:

any finite sized patch of tiles in one Penrose tiling
can be found in any other.

Ammann Lines and LRO
Ammann lines (marked above) are one way to
construct a Penrose tiling: lines must be unbroken.
•Equivalent to local matching rules.
•Ammann lines show long-range order in

quasicrystal: placing one tile forces a whole line
of options along each Ammann line.

•Ammann lines form 5 intersecting 1d Fibonacci
quasicrystals ⇒ non-periodicity of Penrose tiles.

Defects from Local Rules

Placing tiles following local matching rules, it is pos-
sible to create a patch which cannot be extended to
cover all of R2.

•Highlights non-locality of quasicrystals again.
•No tile can fill the hole below.
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Charges in the Penrose Tiling

Treating the matching rules for the Penrose rhombs
as charges, we see that an individual Penrose tile
has no net charge.

•Every simply connected patch of tiles has 0 net
single-arrow charge and double-arrow charge.

Conway’s Decapods

Conway’s Decapods are defected Penrose tilings

•Central decagonal hole with infinitely long
worms (shaded green) radiating outwards.

•Any of the worms can be flipped to produce
another decapod defect. 210 decapods.
• 62 decapods modulo rotations and flips.
• 61 of 62 are genuine defects (cannot be filled in).

•Defect decapods can be identified from Ammann
lines which do not match (blue) across the hole.

The decapods are not simply connected, and so may
carry non-trivial charge
•Can accumulate non-zero net single-arrow charge

Charge 10 ∼ 1 Decapod Charge 4 ∼ 12 Decapods
Charge 8 ∼ 1 Decapod Charge 2 ∼ 22 Decapods
Charge 6 ∼ 5 Decapods Charge 0 ∼ 21 Decapods

Conway’s Defect Conjecture

Every possible hole is equivalent to a decapod
hole by re-arranging tiles around the hole; taking
away or adding a finite number of pieces [Gard].

Understanding Conway’s Conjecture

Decapods are evocative of other phenomena:
•Decapods have semi-infinite Ammann lines which

“miss” each other; pinning them.
•Analogous to fractons?

•Binary charge is not strong enough to distinguish
decapods. Is there a non-abelian charge that
can be assigned that will lift their degeneracy?

•No continuum description of decapods.


