Holomorphic Twists and CONFINEMENT IN N=1 SYM
 for Harvard CMSA
 Quantum Matter Seminar

> Justin Kulp
> with Kasia Budzik, Davide Gaiotto, Brian Williams, JingXiang Wu and Matthew Yu.

Perimeter Institute for
Theoretical Physics
04/Oct/2022
ARXIV:2207.14321, ARXIV:221X.XXXXX, ARXIV:221X.XXXXX

OUtLINES AND PUNCHLINES

I. Introduction and Motivation.
II. Basics Definitions: SUSY and Twist.

III. Infinite Symmetries and Higher Brackets.
IV. Cohomology and Holomorphic Confinement of $\mathcal{N}=1 \mathbf{S Y M}$.
V. Recap.

Three Punchlines

1. Holomorphic twist of SQFTs
2. Infinite dimensional symmetries
3. Holomorphic Confinement of $\mathcal{N}=1$ Super Yang-Mills (SYM)

INTRODUCTION AND MOTIVATION

WHY SUPERSYMMETRY? 1/2

■ Supersymmetry (SUSY) is a symmetry between bosons and fermions

$$
\begin{equation*}
Q \mid \text { boson }\rangle=\mid \text { fermion }\rangle, \quad Q \mid \text { fermion }\rangle=\mid \text { boson }\rangle . \tag{1}
\end{equation*}
$$

■ Particle phenomenology and experiment

- Coleman-Mandula theorem, hierarchy problem, dark matter
- Emergent supersymmetry in condensed matter and statistical systems [Lee]++, [kikuchi, Chen, Xu, Chang]++ M=S tetra theories in which quantities are exactly computable or highly constrained
- Non-renormalization theorems [Sohnius, West], [Mandelstam], [Grisaru, Rocek, Siegel], [Seiberg], [Argyres, Plesser, Seiberg] ++
- Electric-magnetic duality [Montonen, olive], Seiberg-Witten Theory [Seiberg, witten], Seiberg duality [Seiberg]

WHY SUPERSYMMETRY? 2/2

■ Insights from SUSY QFTs can tell us about the real world

- Directly or by studying SUSY breaking [Dine, Yu] ++

Ex. Super QCD. $\mathcal{N}=1 S U\left(N_{c}\right)$ SYM with N_{f} flavors. [Seiberg]++

- Tells us which properties of $N_{f}=N_{c}=3$ are generic
- $N_{f}=0$ (SYM).

Confinement and chiral symmetry breaking (CSB).

- $N_{f}=N_{c}$

Confinement and CSB

- $N_{f}=N_{c}+1$

Confinement and NO CSB

- Strongly coupled IR CFTs...

- Insights from SUSY tell us about pure mathematics
- Supersymmetry and Morse theory [Witten]

WHY TwIST?

- The tractability of SUSY QFTs comes, in part, from the existence of various protected quantities
- Can be invariant under deformation of coupling constant
- Computable in different duality frames; probe NP physics

Ex. F-terms and chiral operators. Protected by two of the four supercharges. Constrain the space of supersymmetric vacua and deformations of the theories [Seiberg].
Ex. Supersymmetric index counts local operators with signs [Kinney, Maldacena, Minwalla, Suvrat], [Romelsberger], [Dolan, Osborn]

■ Twisting isolates these protected quantities [witten]

- The twisted theory is completely mathematically rigorous.
- Check (and prove) dualities at the level of BPS quantities.
- Conjectural dualities lead to powerful mathematics.

The Punchlines in Context

1. Holomorphic twist of SQFTs

- Holomorphic twist captures the protected quantities which give SUSY QFT its power
- Calculations in twisted theory are tractable and constrained
- Mathematically rigorous setting

2. Infinite dimensional symmetries

- Subsector of the original undeformed theory has infinite symmetry enhancements

3. Holomorphic Confinement of $\mathcal{N}=1$ Super Yang-Mills (SYM)

- Twist provides novel approach to understanding phases of SQFTs

BASIC DEFINITIONS: SUSY and the Holomorphic Twist

SUSY and the Semi-Chiral Ring

■ Supersymmetry enhances Poincaré symmetry

$$
\begin{align*}
\left\{Q_{\alpha}^{A}, \bar{Q}_{\dot{\beta} B}\right\} & =\delta_{B}^{A} P_{\alpha \dot{\beta}}, \tag{2}\\
\left\{Q_{\alpha}^{A}, Q_{\beta}^{B}\right\} & =\left\{\bar{Q}_{\dot{\alpha} A}, \bar{Q}_{\dot{\beta} B}\right\}=0 . \tag{3}
\end{align*}
$$

- In Euclidean signature, $\operatorname{Spin}(4) \cong S U(2)_{L} \times S U(2)_{R}$
- Q_{α} and $\bar{Q}_{\dot{\alpha}}$ are two-component spinors

■ Pick some supercharge $Q=Q_{-}$

- The semi-chiral ring of Q consists of all Q-invariant operators

$$
\begin{equation*}
[Q, \mathcal{O}]=0 \tag{4}
\end{equation*}
$$

- If SUSY isn't broken (so that $Q|0\rangle=0$), then a product of Q-invariant operators satisfies

$$
\begin{equation*}
\langle(\mathcal{O}+[Q, \Lambda]) \cdots\rangle=\langle\mathcal{O} \cdots\rangle+\langle[Q, \Lambda \cdots]\rangle=\langle\mathcal{O} \cdots\rangle, \tag{5}
\end{equation*}
$$

So doesn't care about operators modulo $\mathcal{O} \sim \mathcal{O}+[Q, \Lambda]$.

FROM SUSY TO THE HOLOMORPHIC TwIST

■ Given any SQFT, we obtain the Holomorphic Twist by taking cohomology of any one nilpotent supercharge, e.g. $Q:=Q_{-}$

$$
\begin{equation*}
\text { (0) } Q^{2}=0, \quad Q \text {-Closed: }[Q, \mathcal{O}]=0, \quad Q \text {-Exact: }[Q, \Lambda], \tag{6}
\end{equation*}
$$

- Most available \& least forgetful twist: only needs $\mathcal{N}=1$ SUSY.
- Cohomology isolates the semi-chiral ring

■ Anti-holomorphic translations are Q-exact, so twisted theory is (cohomologically) holomorphic [Johansen], [Nekrasov], [Costello]

$$
\begin{equation*}
\left\{Q, \bar{Q}_{\dot{\alpha}}\right\}=\partial_{\bar{z}^{\dot{\alpha}}} \quad \mathbb{R}^{\mu} \approx Q^{2} \tag{7}
\end{equation*}
$$

■ Operators captured by holomorphic twist are those counted by the superconformal index [Saberi, williams]

$$
\begin{equation*}
\mathcal{I}=\operatorname{Tr}(-1)^{F} p^{j_{1}+j_{2}-r / 2} q^{j_{1}-j_{2}-r / 2} e^{-\beta\left\{Q_{-}, S_{+}\right\}} \tag{8}
\end{equation*}
$$

Superfields and Dolbeault Cohomology

$■ 4 \mathrm{~d} \mathcal{N}=1$ SQFTs are formulated in language of superspace.

- Spacetime is a supermanifold with odd coordinates θ^{α} and $\bar{\theta}^{\dot{\alpha}}$
- SUSY multiplets become components of a superfield
- We use a chiral superspace, with only $\bar{\theta}^{\dot{\alpha}}$ coordinates
- The right-handed supercharges act by $\bar{Q}_{\dot{\alpha}}=\partial_{\bar{\theta}^{\dot{\alpha}}}$
- A superfield is of the form

$$
\begin{equation*}
O[\bar{\theta}]=e^{\bar{\theta}^{\dot{\alpha}} \bar{Q}_{\dot{\alpha}}} O^{(0)}=O^{(0)}+O^{(1)}+O^{(2)} \tag{9}
\end{equation*}
$$

■ Identifying $\bar{\theta}^{\dot{\alpha}} \leftrightarrow d \bar{z}^{\dot{\alpha}}$ allows us to think of superfields as $(0, \bullet)$-Dolbeault forms
■ A superfield is semi-chiral if it satisfies $(Q+\bar{\partial}) \mathcal{O}=0$, which happens iff its bottom component is a semi-chiral operator

- The other components satisfy holomorphic descent relations

$$
\begin{equation*}
Q \mathcal{O}^{(n)}+\bar{\partial} \mathcal{O}^{(n-1)}=0 \tag{10}
\end{equation*}
$$

INFINITE DIMENSIONAL SYMMETRIES AND (HIGHER) BRACKETS

A 2d CFT REMINDER

- If ϕ is a 2d chiral conformal primary with chiral dimension h, then we can expand

$$
\phi(z)=\sum_{n \in \mathbb{Z}} z^{-n-h} \hat{\phi}_{n}=z^{-h}\left(\cdots+z^{-1} \hat{\phi}_{1}+z^{0} \hat{\phi}_{0}+z^{1} \hat{\phi}_{-1}+\ldots\right)
$$

■ If we want to extract the mode $\hat{\phi}_{n}$, we know that

$$
\begin{equation*}
\hat{\phi}_{n}=\oint \frac{d z}{2 \pi i} z^{n+h-1} \phi(z) \tag{11}
\end{equation*}
$$

- Formally, extract $n \geq 0$ modes by multiplying by generator z^{n} for the space of holomorphic functions on \mathbb{C}
- Extract $n<0$ modes by integrating against Bochner-Martinelli kernel

$$
\begin{equation*}
\hat{\phi}_{n}=\frac{1}{n!} \phi^{(n)}(0) \propto \oint \partial^{n} \omega_{\mathrm{BM}} \phi(z) \tag{12}
\end{equation*}
$$

where $\omega_{\mathrm{BM}}=1 / z$
■ These are elements of $H^{1,0}\left(\mathbb{C}^{1} \backslash\{0\}\right)$. Note: $H^{1,1}\left(\mathbb{C}^{1} \backslash\{0\}\right)=0$

DOLBEAULT COHOMOLOGY OF $H^{n, \bullet}\left(\mathbb{C}^{n} \backslash\{0\}\right)$

- In other words
concentrated in dey o and ${ }_{\text {fumbers }}^{n-1}$
$\hat{\phi}_{n}=\int_{S^{1}}\left[z^{h} \phi(z) d \bar{z}\right] \wedge \rho, \quad \rho \sim\left\{\begin{array}{l}z^{n} d z \\ \partial^{n} \omega_{\mathrm{BM}}\end{array} \in H^{1,0}(\mathbb{C} \backslash\{0\})\right.$.
■ $H^{2, \bullet}\left(\mathbb{C}^{2} \backslash\{0\}\right)$ is concentrated in degrees 0 and 1
- Degree 0 . Classes are (2,0)-Dolbeault forms with $n, m \geq 0$:

$$
\begin{equation*}
\rho \sim z_{1}^{n} z_{2}^{m} d^{2} z \tag{14}
\end{equation*}
$$

- Degree 1. Classes are (2,1)-Dolbeault forms with $n, m \geq 0$:

$$
\begin{equation*}
\rho \sim \partial_{z^{1}}^{n} \partial_{z^{2}}^{m} \omega_{\mathrm{BM}} \tag{15}
\end{equation*}
$$

- The Bochner-Martinelli Kernel is now the thing such that

$$
\begin{equation*}
\int_{S^{3}} \omega_{B M} f(z)=f(0) \tag{16}
\end{equation*}
$$

for any holomorphic $f(z)$ on \mathbb{C}^{2}.

Modes in the Holomorphic Twist

■ In \mathbb{C}^{2}, we've seen that (chiral) superfields \mathcal{O} are identifiable with $(0, \bullet)$-forms
■ For any $\rho \in H^{2, \bullet}\left(\mathbb{C}^{2} \backslash\{0\}\right)$ we define

$$
\begin{equation*}
\hat{O}_{\rho}=\oint_{S^{3}} O \wedge \rho \tag{17}
\end{equation*}
$$

- Degree o classes $\rho \sim z_{1}^{n} z_{2}^{m} d^{2} z$ give analogue of non-negative modes of VOA, $\hat{O}_{n, m}=\hat{O}_{\rho}$
- Degree 1 classes $\rho \sim \partial_{z^{1}}^{n} \partial_{z^{2}}^{m} \omega_{\mathrm{BM}}$ give analogue of negative modes of VOA $\hat{O}_{-n-1,-m-1}=\hat{O}_{\rho}$
■ Infinite dimensional symmetry enhancements analogous to Virasoro and Kac-Moody [Gwilliam, williams]. [Sabemi, Williums]
\rightarrow Deformation \rightsquigarrow [Beem, Lemos, Liendo, Peelaers, Raselli, van Rees]
■ Stress: Statement about the OPE of a subsector of the original physical theory, not a deformed/modified theory.

Supereurrent
Multiple $S_{\alpha, \mu} T_{\mu v}$
I define

$$
S_{\dot{\alpha}}^{(0)} \equiv S_{+,+\dot{\alpha}}
$$

It turns out

$$
\begin{aligned}
& Q\left(\partial^{\dot{\alpha}} S_{\dot{\alpha}}^{(0)}\right)=0 \\
& \Leftrightarrow \partial^{\dot{\alpha}} S_{\dot{\alpha}} \text { is semi-chiral }
\end{aligned}
$$

Actually, when cons. R-sym

$$
S_{\dot{\alpha}} \text { is semi-chiral }
$$

As it turns out, $S_{\dot{2}}^{(1)}$ contains the holomorphic part of physical stress tensor and generates diffs of spacetime.

Brackets and Higher Brackets

■ Theories are equipped with local product called λ-Bracket

$$
\begin{equation*}
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}\right\}_{\lambda}=\oint_{S^{3}} e^{\lambda \cdot z} \mathcal{O}_{1}(z, \bar{z}) \mathcal{O}_{2}(0) d^{2} z \tag{18}
\end{equation*}
$$

- Product is local since we can shrink S^{3} without changing homology class of integration cycle
- \mathcal{O}_{1} and \mathcal{O}_{2} have regular OPE if this bracket vanishes.
- Tells you what happens to a SUSY transformation of O_{2} if you add O_{1} as an F-term (interaction)

■ Higher brackets describe homotopy between lower brackets

$$
\begin{gather*}
\left(\theta_{1} \theta_{2}\right) \theta_{3}=\theta_{1}\left(\theta_{2} \theta_{3}\right) \quad\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}=\text { assocuintor } \\
\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{n+1}\right\}_{\lambda_{1}, \ldots, \lambda_{n}} \tag{19}
\end{gather*}
$$

- Capture operations failure to be holomorphic on chains.

Cohomology and Confinement

Free Cohomology and Adding INTERActions

- Start with the free Free Cohomology \mathcal{V}
- Gauge-invariant polynomials (words) in fields and derivatives (letters)

■ Interacting quantum theory is obtained from underlying free-classical theory \mathcal{V} as cohomology of a new operator

$$
\begin{equation*}
\mathbf{Q}=Q_{0}+Q_{1}+Q_{2} \ldots \tag{20}
\end{equation*}
$$

where Q_{n} is computed by n-loop Feynman diagrams.
■ In interacting quantum theory all perturbative corrections are contained in the higher brackets of the free holomorphic factorization algebra! [Budzik, Gaiotto, JK, Williams, Wu, Yu]

$$
\begin{equation*}
\mathbf{Q} \mathcal{O}=\{\mathcal{I}, \mathcal{O}\}_{0}+\{\mathcal{I}, \mathcal{I}, \mathcal{O}\}_{0,0}+\{\mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{O}\}_{0,0,0}+\ldots \tag{21}
\end{equation*}
$$

- [Tree-level] ~ 1 I , [1-Loop] ~ 2 I's, etc.

FEYNMAN DIAGRAMS

■ Feynman diagrams are Laman graphs. [Budzik, Gaiotto, JK, Wu, Yu]

- Arbitrary holomorphic-topological twists in arbitrary dimensions are captured by generalized-Laman graphs [Kontsevich], [Gaiotto, Moore, Witten]
- Arbitrary integral takes the form:

$$
\begin{equation*}
\mathcal{I}_{\Gamma}[\lambda ; z] \equiv \int_{\mathbb{R}^{4}\left|\Gamma_{0}\right|-4} \bar{\partial}\left[\prod_{e \in \Gamma_{1}} \mathcal{P}\left(x_{e_{0}}-x_{e_{1}}+z_{e}, \bar{x}_{e_{0}}-\bar{x}_{e_{1}}\right)\right]\left[\prod_{v \in \Gamma_{0}^{\prime}} e^{\lambda_{v}: x_{v}} d^{2} x_{v}\right] \tag{22}
\end{equation*}
$$

- Change of variables maps integral to Fourier transform of a polytope in loop momenta, the operatope.
- Feynman integrals satisfy infinite collection of geometric quadratic identities; enforcing associativity
- Can bootstrap all Feynman integrals from these identities.

TwISTING $\mathcal{N}=1 \mathbf{S Y M}$

■ $\mathcal{N}=1 \mathbf{S Y M}$ is $S U(N)$ gauge theory with an adjoint fermion

$$
\begin{equation*}
\mathcal{L}=\int d^{2} \theta \frac{-i}{8 \pi} \tau \operatorname{tr} W_{\alpha} W^{\alpha}+\text { c.c. } \tag{23}
\end{equation*}
$$

■ Twist is identified (in a non-trivial way) with a holomorphic bc System [Costello], [Elliot, Safronov, Williams], [Saberi, Williams]

- Fields are collected in adjoint bosonic superfield b and (co)adjoint fermionic superfield c.
- The Lagrangian of this theory is

$$
\begin{equation*}
\mathcal{L}_{\text {twisted }}=\operatorname{Tr} b\left(\bar{\partial} c-\frac{1}{2}[c, c]\right)+\tau \operatorname{Tr} \partial_{\alpha} c \partial^{\alpha} c \tag{24}
\end{equation*}
$$

- Free cohomology

$$
\begin{equation*}
\mathbb{C}\left[b, \partial_{\alpha} b, \partial_{\alpha} \partial_{\beta} b, \ldots, \partial_{\alpha} c, \partial_{\alpha} \partial_{\beta} c, \ldots\right]^{G} \tag{25}
\end{equation*}
$$

- Derivative of the stress tensor is $\partial_{\alpha} S^{\alpha}=\partial_{\alpha} b_{A} \partial^{\alpha} c^{A}$.

Holomorphic Confinement

■ Adding one loop corrections, we find $\partial_{\alpha} S^{\alpha}=Q \operatorname{Tr} b^{2}$

- $\partial_{\alpha} S^{\alpha}$ generates (among other things) all the remaining spacetime symmetries. Su(2)
- Exactness of $\partial_{\alpha} S^{\alpha}$ means local operators are invariant under remaining spacetime transformations.
- Theory becomes topological at one loon! $\begin{gathered}\text { Survires higher loop } \\ \text { Corrections }\end{gathered}$ bc System
- Being topological is compatible with confinement: if topological in the UV, then topological in the IR.
- Constrains IR physics: the holomorphic twist of the IR must also be topological.
- We call this Holomorphic

Confinement [Budzik, Gaiotto, JK, williams, Wu, Yu]

■ Large N calculations with twisted holography dual.

RECAP

Conclusion

■ SUSY QFTs are toy models for real world physics. Tractability comes from protected quantities.

- Protected quantities are isolated by the holomorphic twist, by taking the cohomology of one supercharge.
- The operators that survive are those that contribute to the superconformal index.
- This is not a deformation, it is a statement about a subsector of the original theory.

Features

These sectors have:

1. Infinite dimensional symmetry enhancements, analogous to Virasoro and Kac-Moody symmetries
2. Feynman diagrams which are completely bootstrappable
3. Novel UV manifestation of confinement

FUTURE GOALS

■ Super QCD. Twist has 4d $\operatorname{PSU}\left(N_{f} \mid N_{f}\right)$ Kac-Moody symmetry.
$■ \mathcal{N}=4$ SYM. Compute cohomology of $\frac{1}{16}$-BPS states.

- Can the superconformal index be written as a sum of characters for the infinite dimensional symmetry algebras?

■ Seiberg Duality. Requires non-perturbative corrections.

- Prove Seiberg duality at level of twisted theory.
- What does Seiberg duality translate to for pure mathematics?

■ Understand if the infinite dimensional symmetry algebras can be used for the bootstrap (like the $\mathcal{N}=2$ VOAs)

Fin

