Hyperbolic Honeycombs and SELF-SIMILAR QUASICRYSTALS for Quantum Fields \& Strings Seminar

Justin Kulp
with Latham Boyle
Perimeter Institute for
Theoretical Physics
27/JAN / 2023
ARXIV:230X.XXXXX

OUtLINES AND PUNCHLINES

I. Introduction and Motivation.
II. Beyond Euclidean Lattices.
III. Hyperbolic Quasicrystals 2d/1d.
IV. Higher Hyperbolic Quasicrystals.
V. Conclusion.

Three Punchlines

1. Hyperbolic lattices and quasicrystals
2. New quasiperiodic patterns
3. Applications to physics (holography, condensed matter)

INTRODUCTION AND MOTIVATION

History: Patterns, Tessellations, and Lattices

■ Sumerians, ancient greece

- What shapes must a unit have to fill space without gaps by figures congruent to that unit?
- Point groups < $O(d)$
- Infinitely many 2d point groups, \mathbb{Z}_{n} and $D_{2 n}$.
- Translational symmetry
- Crystallographic restriction theorem
- Only 2,3,4,6-fold symmetry around a point in 2d and 3d
- 17 Wallpaper Groups in 2d.

No 5-Fold SYMMETRY IN 2D/3D

- 1. Pick a site of 5 -fold symmetry
- 2. Take your favourite nearby lattice site and hit it with your 5 -fold symmetry action.

3. Generates a regular pentagon of sites in a plane of the lattice.
$\neq 4$. All pentagon displacement vectors must be in the lattice.
© 5 . Add them up at a single point to generate sites forming a smaller pentagon.

Hyperbolic Space

■ We can tile other surfaces

- Sphere (EdS) and hyperbolic space (EAdS) are other maximally symmetric spaces.
- Tilings of sphere closely related to existence of 3d polyhedra

■ Hyperbolic space is more novel

- Harder to intuit
- Applications in art, biology, network theory, and physics
- Hyperbolic band theory, tensor networks, error-correction (HaPPY code), "discrete holography"

A SIMPLE QUESTION. A CRAZY ANSWER.

- Given a set of prototiles τ with rule that colours must match, can you use them to tile \mathbb{R}^{2} ?
- Is there an algorithm to determine if τ tiles the plane?

■ Options:

1. τ does not tile \mathbb{R}^{2}.
2. τ tiles \mathbb{R}^{2} and admits a periodic tiling.
3. τ tiles \mathbb{R}^{2} but never admits periodic tilings. τ is an aperiodic set.
! There exists an algorithm to determine if τ tiles the plane iff all possible τ are of type 1 or type 2.
! There is a map from

$$
\begin{equation*}
\{\text { Turing Machines } M\} \mapsto\{\text { Tile Sets } \tau(M)\} \tag{1}
\end{equation*}
$$

such that M halts iff $\tau(M)$ tiles the plane.

QUASICRYSTALS

■ Quasicrystals are aperiodic tilings which still possess order.

- Aperiodic means no translation symmetry by any amount at all.

■ Possess classically forbidden symmetries.

- Spoil many classical intuitions
- 2011 Nobel Prize in Chemistry
- Show up in many places
- Material physics: built in labs, found in nature
- CMT: lattice models, topological phases
- Math: logic, non-commutative geometry
- HEP: 2d CFT, discrete holography?

OUtLINES AND PUNCHLINES

I. Introduction and Motivation.
II. Beyond Euclidean Lattices.
III. Hyperbolic Quasicrystals 2d/1d. $\begin{gathered}\text { Hyperbolic } \\ \text { Lattices }\end{gathered}$
IV. Higher Hyperbolic Quasicrystals.
V. Conclusion.

Three Punchlines

1. Hyperbolic lattices and quasicrystals
2. New quasiperiodic patterns
3. Applications to physics (holography, condensed matter)

Beyond Euclidean Lattices

REGULAR TILINGS IN 2D

■ In the Euclidean plane, the angle of a regular p-gon $\{p\}$ is $(1-2 / p) \pi$

- Regular tilings of $\mathbb{R}^{2}:\{3,6\},\{6,3\},\{4,4\}$
- In higher dimensions, must make sure that dihedral angles fit around edges, etc.

■ In the Hyperbolic plane, angles of a regular p-gon gradually decrease to zero as the edges get bigger.

- We can use this to tune the p-gons to fit around a vertex

$$
\frac{1}{p}+\frac{1}{q} \begin{cases}>\frac{1}{2} & \{p, q\} \text { tessellates } \mathbb{S}^{2} \\ =\frac{1}{2} & \{p, q\} \text { tessellates } \mathbb{E}^{2} \\ <\frac{1}{2} & \{p, q\} \text { tessellates } \mathbb{H}^{2}\end{cases}
$$

Regular Tilings in ed: Pictures

Regular Honeycombs in Hyperbolic Space

$\mathbb{H}^{2}\{p, q\}$ where $\frac{1}{p}+\frac{1}{q}<\frac{1}{2}$
$\mathbb{H}^{3}\{4,3,5\},\{5,3,4\},\{5,3,5\}$, and $\{3,5,3\}$ [right]
$\mathbb{H}^{4}\{3,3,3,5\},\{5,3,3,3\}$, $\{4,3,3,5\},\{5,3,3,4\}$, and $\{5,3,3,5\}$
\mathbb{H}^{5} Only some with non-finite cells and vertex figures.
\mathbb{H}^{d} When $d>5$, none at all.

The \{3,5,3\} Hyperbolic Honeycomb Outside

QUASICRYSTALS

■ Quasicrystals are aperiodic tilings which still possess order.

- Aperiodic means no translation symmetry by any amount at all.
- Define by their diffraction pattern: reciprocal lattice is spanned by \mathbb{Z}-linear combinations of $>d$ basis vectors in d dimensions.

- There are many ways to create a quasicrystal (not all of which are equivalent).
- Constructions highlight different properties.

1. Local Matching Rules.
2. Ammann Lines. Long-range order
3. Cut and Project. Forbidden symmetries
4. Substitution Rules. Aperiodicity

Cut and Project

SUBSTITUTION RULES: DEFINITION

SUBStitution Rules: In Action

SUBSTITUTION RULES: IMPLIES APERIODIC

- Start with a finite set of (decorated) prototiles $\tau=\left\{T_{1}, \ldots, T_{N}\right\}$
- Suppose there is a unique rule for grouping prototiles into larger "supertiles," with scale factor λ
- Then τ is an aperiodic set.

Ex. Penrose tiling has two prototiles; supertiles have $\lambda=\frac{1}{2}(1+\sqrt{5})$.
Ex. (Non-Example) There is no unique/local way to group an unmarked square tiling into larger squares. Domain walls can form.

■ Capture "combinatorial information" in the substitution matrix.
! For aperiodic tilings, dominant eigenvalue is $\lambda^{2}>1$ and irrational.

$$
\binom{\text { Thin }^{\prime}}{\text { Thick }^{\prime}}=\left(\begin{array}{ll}
1 & 1 \tag{2}\\
1 & 2
\end{array}\right)\binom{\text { Thin }}{\text { Thick }}
$$

How many Penrose Tilings are there?

! There are an uncountable infinity of Penrose Tilings.

- Penrose tilings are Locally Indistinguishable: any finite-sized patch of tiles in one can be found in any other.
- Penrose tilings have local scale symmetry: take any tiling, decimate it, rescale it by λ. This new tiling is LID from the original (but globally distinct).

SUMMARY OF BACKGROUND

- Hyperbolic space exists:
- You can tile it with regular tessellations. There are infinitely many $\{p, q\}$ tilings in 2d, and a few more in higher dimensions.
- Quasicrystals exist:
- Aperiodic. Classically forbidden symmetries. Long-range order.
- Many constructions; most useful for us is existence of a unique (invertible) local substitution rule with irrational scale factor λ.
- Most famous example is the Penrose tiling.

HYpERBOLIC QUASICRYSTALS 2D/1D

Growing Hyperbolic Honeycombs

A General Rule in 2d/1D

The CLaim

HYPERBOLIC QUASICRYSTALS
 IN HIGHER DIMENSIONS

Higher Dimensions and a Conjecture of Thurston

- A conceptual problem/test:
- 1d is too topological: no curvature, where tiles live/lengths is pretty meaningless
- Is this really a relationship between geometry of hyperbolic tessellations and quasicrystals?
- Can we identify a similar relationship in higher dimensions?
- Recall in \mathbb{H}^{3} there were 4 regular tessellations: $\{4,3,5\},\{5,3,4\},\{5,3,5\}$, and $\{3,5,3\}$ [right]

Conjecture: Boyle (2019) Thurston (?)

The boundary of the $\{3,5,3\}$ lattice looks locally like the Penrose tiling.

Growing $\{3,5,3\}$
By carefully thinking about how the bulk ad patch grows, and making a careful analogy to the ad bulk examples, we will see how ad boundary tile data is encoded in the species and relative configurations of boundary vertices.

\{3,5,3\} PROJECTED

The Tiles

Resolution of Conjecture

- 3 natural tiles in the growth of a single icosahedral cell
- With more complicated starting configurations, there will be more complicated tiles that can appear on the boundary
- Procedure defines a consistent 2d aperiodic substitution rule

■ Using further constraints (like χ) one can show (similar to 2d) that you only need to consider two prototiles (in principle)

RESOLUTION OF CONJECTURE

- 3 natural tiles in the growth of a single icosahedral cell
- With more complicated starting configurations, there will be more complicated tiles that can appear on the boundary
- Procedure defines a consistent 2 d aperiodic substitution rule

■ Using further constraints (like χ) one can show (similar to 2d) that you only need to consider two prototiles (in principle)

- The resulting 3d/2d substitution rule turns out to have scale factor $\lambda_{\{3,5,3\}}=\lambda_{\text {Penrose }}^{2}$.
- A priori, this doesn't mean our answer is wrong, perhaps we just didn't find a fine-grained enough set of boundary tiles.
- By consider the space of Penrose tilings, can show there is no refinement that produces Penrose tilings.
- Thurston's conjecture appears to be false.

Conclusion

OUtLINES AND PUNCHLINES

1. Hyperbolic lattices and quasicrystals

- Hyperbolic lattices and quasicrystals exist. There appears to be a relationship between them.
- What does the topping-out of regular lattices in \mathbb{H}^{4} mean?

2. New quasiperiodic patterns

- 2d Quasicrystals with 5-fold symmetry are all the Penrose Tiling or close cousins: produced a new 5 -fold symmetric quasicrystal from hyperbolic space techniques.
- Is there a similar near-miss for the Elser-Sloane quasicrystal?

3. Applications to physics (holography, condensed matter)

- Can we extend the results of Erdmenger et al to higher dimensions?

Fin

Failed Tiling

Ammann Lines

