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INTRODUCTION AND MOTIVATION




HISTORY: PATTERNS, TESSELLATIONS, AND LATTICES

®m Sumerians, ancient greece
» What shapes must a unit have

to fill space without gaps by
figures congruent to that unit?

m Point groups < O(d)
> Infinitely many 2d point groups,
Zy, and Do,,.
m Translational symmetry
> Crystallographic restriction
theorem
> Only 2,3,4,6-fold symmetry
around a point in 2d and 3d
> 17 Wallpaper Groups in 2d.




No 5-FOLD SYMMETRY IN 2D/3D

« 1. Pick a site of 5-fold symmetry

- 2. Take your favourite nearby
lattice site and hit it with your
5-fold symmetry action.

" 3. Generates a regular pentagon

of sites in a plane of the lattice.

/4. All pentagon displacement
vectors must be in the lattice.

o 5. Add them up at a single point
to generate sites forming a
smaller pentagon.




HYPERBOLIC SPACE

m We can tile other surfaces o -
> Sphere (EdS) and hyperbolic ’
space (EAdS) are other
maximally symmetric spaces.
> Tilings of sphere closely related
to existence of 3d polyhedra

m Hyperbolic space is more novel
> Harder to intuit

> Applications in art, biology,
network theory, and physics

> Hyperbolic band theory, tensor
networks, error-correction
(HaPPY code), “discrete
holography”




A SIMPLE QUESTION. A CRAZY ANSWER.

m Given a set of prototiles 7 with
e K O
> |s there an algorithm to |’ . m

determine if 7 tiles the plane?

m Options:
1. 7 does not tile R%.
2. 7 tiles R? and admits a periodic tiling.
3. 7 tiles R? but never admits periodic tilings. 7 is an aperiodic set.

I There exists an algorithm to determine if 7 tiles the plane iff all
possible 7 are of type 1 or type 2.

I There is a map from
{Turing Machines M} +— {Tile Sets 7(M)} (1)
such that M halts iff 7(M) tiles the plane.




QUASICRYSTALS

m Quasicrystals are aperiodic tilings which
still possess order.

> Aperiodic means no translation symmetry by
any amount at all.

m Possess classically forbidden symmetries.
> Spoil many classical intuitions
»> 2011 Nobel Prize in Chemistry
m Show up in many places
> Material physics: built in labs, found in nature
> CMT: lattice models, topological phases
> Math: logic, non-commutative geometry
> HEP: 2d CFT, discrete holography?
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BEYOND EUCLIDEAN LATTICES




REGULAR TILINGS IN 2D
Da®a®a®

m In the Euclidean plane, the angle of a
regular p-gon {p} is (1 — 2/p)x
» Regular tilings of R%: {3,6}, {6,3}, {4,4}
» In higher dimensions, must make sure that
dihedral angles fit around edges, etc.

m In the Hyperbolic plane, angles of a regular
p-gon gradually decrease to zero as the
edges get bigger.
> We can use this to tune the p-gons to fit

around a vertex

R 3 {p.q} tessellates S?
Sto 4= 3 {p,q} tessellates E? .
<3 {p,q} tessellates H?




REGULAR TILINGS IN 2D: PICTURES

S0 0w OO

2383 548 8%y 4s,5% $5,8%
37\»-‘, Lattree o B
E* -
49.4% £6,3%
%
IH cee G ©OC




REGULAR HONEYCOMBS IN HYPERBOLIC SPACE

> 1,1 1
H {p,q}wherep-l-q <3

H3 {4,3,5}, {5,3,4}, {5,3,5},
and {3,5, 3} [right]

H* {3,3,3,5}, {5,3,3,3},
{4,3,3,5}, {5,3,3,4}, and
{5,3,3,5}

H® Only some with non-finite
cells and vertex figures.

H? When d > 5, none at all.
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QUASICRYSTALS

m Quasicrystals are aperiodic tilings which
still possess order.
> Aperiodic means no translation symmetry by
any amount at all.

> Define by their diffraction pattern: reciprocal
lattice is spanned by Z-linear combinations of
> d basis vectors in d dimensions.

m There are many ways to create a quasicrystal
(not all of which are equivalent).

> Constructions highlight different properties.
1. Local Matching Rules.

2. Ammann Lines. Long-range order

3. Cut and Project. Forbidden symmetries

4. Substitution Rules. Aperiodicity
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SUBSTITUTION RULES: DEFINITION

@ -




SUBSTITUTION RULES: IN ACTION
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SUBSTITUTION RULES: IMPLIES APERIODIC

m Start with a finite set of (decorated)
prototiles 7 = {T},...,Tn} [ 11

m Suppose there is a unique rule for | \
grouping prototiles into larger “super-
tiles,” with scale factor \

m Then 7 is an aperiodic set.
Ex. Penrose tiling has two prototiles; supertiles have A = £ (1 + V/5).

Ex. (Non-Example) There is no unique/local way to group an unmarked
square tiling into larger squares. Domain walls can form.

m Capture “combinatorial information” in the substitution matrix.
! For aperiodic tilings, dominant eigenvalue is A\?> > 1 and irrational.

Thin’ (11 Thin (2)
Thick’ ) — \1 2 Thick



How MANY PENROSE TILINGS ARE THERE?

! There are an uncountable
infinity of Penrose Tilings.

m Penrose tilings are Locally
Indistinguishable: any
finite-sized patch of tiles in
one can be found in any other.

m Penrose tilings have local scale
symmetry: take any tiling,
decimate it, rescale it by \.
This new tiling is LID from the

original (but globally distinct).




SUMMARY OF BACKGROUND
(NI

m Hyperbolic space exists:

> You can tile it with regular tessellations.
There are infinitely many {p, ¢} tilings in 2d,
and a few more in higher dimensions.

m Quasicrystals exist:

> Aperiodic. Classically forbidden symmetries.
Long-range order.

> Many constructions; most useful for us is
existence of a unique (invertible) local
substitution rule with irrational scale factor \.

> Most famous example is the Penrose tiling.




HYPERBOLIC QUASICRYSTALS 2D/1D




GROWING HYPERBOLIC HONEYCOMBS
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A GENERAL RULE IN 2D/1D
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HYPERBOLIC QUASICRYSTALS IN
HIGHER DIMENSIONS




HIGHER DIMENSIONS AND A CONJECTURE OF THURSTON

m A conceptual problem/test:
> 1d is too topological: no curvature, where tiles
live/lengths is pretty meaningless

> Is this really a relationship between geometry
of hyperbolic tessellations and quasicrystals?

m Can we identify a similar relationship in
higher dimensions?
» Recall in H? there were 4 regular tessellations:
{4,3,5}, {5,3,4}, {5, 3,5}, and {3, 5,3} [right]

Conjecture: Boyle (2019) Thurston (?)

The boundary of the {3,5,3} lattice looks
locally like the Penrose tiling.




GROWING {3,5,3}

By carefully thinking about how the bulk 3d patch grows, and
making a careful analogy to the 2d bulk examples, we will see
how 2d boundary tile data is encoded in the species and relative
configurations of boundary vertices.
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RESOLUTION OF CONJECTURE

m 3 natural tiles in the growth of a single icosahedral cell

> With more complicated starting configurations, there will be
more complicated tiles that can appear on the boundary

» Procedure defines a consistent 2d aperiodic substitution rule

m Using further constraints (like x) one can show (similar to 2d)
that you only need to consider two prototiles (in principle)




RESOLUTION OF CONJECTURE

m 3 natural tiles in the growth of a single icosahedral cell

> With more complicated starting configurations, there will be
more complicated tiles that can appear on the boundary

» Procedure defines a consistent 2d aperiodic substitution rule

m Using further constraints (like x) one can show (similar to 2d)
that you only need to consider two prototiles (in principle)

m The resulting 3d/2d substitution rule turns out to have scale
factor A\35.31 = Menrose-

» A priori, this doesn’t mean our answer is wrong, perhaps we
just didn’t find a fine-grained enough set of boundary tiles.

> By consider the space of Penrose tilings, can show there is no
refinement that produces Penrose tilings.

» Thurston’s conjecture appears to be false.



CONCLUSION




OUTLINES AND PUNCHLINES

1. Hyperbolic lattices and quasicrystals

» Hyperbolic lattices and quasicrystals exist. There appears to
be a relationship between them.

» What does the topping-out of regular lattices in H* mean?
2. New quasiperiodic patterns

» 2d Quasicrystals with 5-fold symmetry are all the Penrose
Tiling or close cousins: produced a new 5-fold symmetric
quasicrystal from hyperbolic space techniques.

> Is there a similar near-miss for the Elser-Sloane quasicrystal?

3. Applications to physics (holography, condensed matter)

> Can we extend the results of Erdmenger et al to higher
dimensions?
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