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Three Punchlines

�. Hyperbolic lattices and quasicrystals
�. New quasiperiodic patterns
�. Applications to physics (holography, condensed matter)
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H������: P�������, T������������, ��� L�������

Sumerians, ancient greece
I What shapes must a unit have

to fill space without gaps by
figures congruent to that unit?

Point groups � O(d)
I Infinitely many �d point groups,

Zn and D2n.

Translational symmetry
I Crystallographic restriction
theorem

I Only �,�,�,�-fold symmetry
around a point in �d and �d

I �� Wallpaper Groups in �d.
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N� �-F��� S������� �� ��/��

�. Pick a site of �-fold symmetry
�. Take your favourite nearby
lattice site and hit it with your
�-fold symmetry action.

�. Generates a regular pentagon
of sites in a plane of the lattice.

�. All pentagon displacement
vectors must be in the lattice.

�. Add them up at a single point
to generate sites forming a
smaller pentagon.
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H��������� S����

We can tile other surfaces
I Sphere (EdS) and hyperbolic
space (EAdS) are other
maximally symmetric spaces.

I Tilings of sphere closely related
to existence of �d polyhedra

Hyperbolic space is more novel
I Harder to intuit
I Applications in art, biology,
network theory, and physics

I Hyperbolic band theory, tensor
networks, error-correction
(HaPPY code), “discrete
holography”
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A S����� Q�������. A C���� A�����.
Given a set of prototiles ⌧ with
rule that colours must match,
can you use them to tile R

2?
I Is there an algorithm to
determine if ⌧ tiles the plane?

Options:
�. ⌧ does not tile R

2.
�. ⌧ tiles R2 and admits a periodic tiling.
�. ⌧ tiles R2 but never admits periodic tilings. ⌧ is an aperiodic set.

! There exists an algorithm to determine if ⌧ tiles the plane i� all
possible ⌧ are of type � or type �.

! There is a map from

{Turing Machines M} 7! {Tile Sets ⌧(M)} (�)

such thatM halts i� ⌧(M) tiles the plane.
� ��



Q������������

Quasicrystals are aperiodic tilings which
still possess order.
I Aperiodic means no translation symmetry by
any amount at all.

Possess classically forbidden symmetries.
I Spoil many classical intuitions
I ���� Nobel Prize in Chemistry

Show up in many places
I Material physics: built in labs, found in nature
I CMT: lattice models, topological phases
I Math: logic, non-commutative geometry
I HEP: �d CFT, discrete holography?
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Classical
Crystals

Hyperbolic
Lattices Quasicrystals

(D��)d Hyperbolic
?
= Dd Quasicrystals
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R������ T������ �� ��

In the Euclidean plane, the angle of a
regular p-gon {p} is (1� 2/p)⇡
I Regular tilings of R2: {�,�}, {�,�}, {�,�}
I In higher dimensions, must make sure that
dihedral angles fit around edges, etc.

In the Hyperbolic plane, angles of a regular
p-gon gradually decrease to zero as the
edges get bigger.
I We can use this to tune the p-gons to fit
around a vertex
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p
+

1

q

8
><

>:

>
1
2 {p, q} tessellates S2

= 1
2 {p, q} tessellates E2

<
1
2 {p, q} tessellates H2

.
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R������ H��������� �� H��������� S����

H
2 {p, q} where 1

p + 1
q <

1
2

H
3 {4, 3, 5}, {5, 3, 4}, {5, 3, 5},
and {3, 5, 3} [right]

H
4 {3, 3, 3, 5}, {5, 3, 3, 3},
{4, 3, 3, 5}, {5, 3, 3, 4}, and
{5, 3, 3, 5}

H
5 Only some with non-finite
cells and vertex figures.

H
d When d > 5, none at all.
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Quasicrystals are aperiodic tilings which
still possess order.
I Aperiodic means no translation symmetry by
any amount at all.

I Define by their di�raction pattern: reciprocal
lattice is spanned by Z-linear combinations of
> d basis vectors in d dimensions.

There are many ways to create a quasicrystal
(not all of which are equivalent).
I Constructions highlight di�erent properties.
�. Local Matching Rules.
�. Ammann Lines. Long-range order
�. Cut and Project. Forbidden symmetries
�. Substitution Rules. Aperiodicity
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S����������� R����: I������ A��������

Start with a finite set of (decorated)
prototiles ⌧ = {T1, . . . , TN}

Suppose there is a unique rule for
grouping prototiles into larger “super-
tiles,” with scale factor �

Then ⌧ is an aperiodic set.
Ex. Penrose tiling has two prototiles; supertiles have � = 1

2 (1 +
p
5).

Ex. (Non-Example) There is no unique/local way to group an unmarked
square tiling into larger squares. Domain walls can form.

Capture “combinatorial information” in the substitution matrix.
! For aperiodic tilings, dominant eigenvalue is �2

> 1 and irrational.✓
Thin0

Thick0

◆
=

✓
1 1
1 2

◆✓
Thin
Thick

◆
(�)
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H�� ���� P������ T������ ��� �����?

! There are an uncountable
infinity of Penrose Tilings.

Penrose tilings are Locally
Indistinguishable: any
finite-sized patch of tiles in
one can be found in any other.

Penrose tilings have local scale
symmetry: take any tiling,
decimate it, rescale it by �.
This new tiling is LID from the
original (but globally distinct).
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S������ �� B���������

Hyperbolic space exists:
I You can tile it with regular tessellations.
There are infinitely many {p, q} tilings in �d,
and a few more in higher dimensions.

Quasicrystals exist:
I Aperiodic. Classically forbidden symmetries.
Long-range order.

I Many constructions; most useful for us is
existence of a unique (invertible) local
substitution rule with irrational scale factor �.

I Most famous example is the Penrose tiling.

�� ��



H��������� Q������������ ��/��



G������ H��������� H���������
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H�����D��������� ��� � C��������� �� T�������

A conceptual problem/test:
I �d is too topological: no curvature, where tiles
live/lengths is pretty meaningless

I Is this really a relationship between geometry
of hyperbolic tessellations and quasicrystals?

Can we identify a similar relationship in
higher dimensions?
I Recall in H

3 there were � regular tessellations:
{4, 3, 5}, {5, 3, 4}, {5, 3, 5}, and {3, 5, 3} [right]

Conjecture: Boyle (����) Thurston (?)
The boundary of the {�,�,�} lattice looks
locally like the Penrose tiling.
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G������ {�,�,�}

By carefully thinking about how the bulk �d patch grows, and
making a careful analogy to the �d bulk examples, we will see
how �d boundary tile data is encoded in the species and relative
configurations of boundary vertices.
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R��������� �� C���������

� natural tiles in the growth of a single icosahedral cell
I With more complicated starting configurations, there will be
more complicated tiles that can appear on the boundary

I Procedure defines a consistent �d aperiodic substitution rule

Using further constraints (like �) one can show (similar to �d)
that you only need to consider two prototiles (in principle)

The resulting �d/�d substitution rule turns out to have scale
factor �{3,5,3} = �

2
Penrose.

I A priori, this doesn’t mean our answer is wrong, perhaps we
just didn’t find a fine-grained enough set of boundary tiles.

I By consider the space of Penrose tilings, can show there is no
refinement that produces Penrose tilings.

I Thurston’s conjecture appears to be false.
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�. Hyperbolic lattices and quasicrystals
I Hyperbolic lattices and quasicrystals exist. There appears to
be a relationship between them.

I What does the topping-out of regular lattices in H
4 mean?

�. New quasiperiodic patterns
I �d Quasicrystals with �-fold symmetry are all the Penrose
Tiling or close cousins: produced a new �-fold symmetric
quasicrystal from hyperbolic space techniques.

I Is there a similar near-miss for the Elser-Sloane quasicrystal?
�. Applications to physics (holography, condensed matter)

I Can we extend the results of Erdmenger et al to higher
dimensions?
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