# TwISTED TOOLS FOR (UNTwISTED) QUANTUM FIELD THEORY 

Yale Geometry, Symmetry and Physics Seminar

Justin Kulp<br>With Davide Gaiotto, and JingXiang Wu<br>and earlier works with Kasia Budzik, Brian Williams, and Matthew Yu.

Simons Center for Geometry and Physics
01/APR/2024
ARXIV:2403.13049, ARXIV:2306.01039, ARXIV:2207.14321

## OUTLINES AND Punchlines 1/2

- Discuss ideas from formal deformation theory in QFT
- Familiar example is Ocneanu rigidity of fusion categories

■ QFTs have "higher" multilinear $k$-ary operations ("brackets")

$$
\begin{equation*}
\{-,-, \ldots,-\} \tag{1}
\end{equation*}
$$

- Control: deformations, (generalized) OPEs, and anomalies
- $\infty$-algebras, factorization algebras, and operads

■ Familiar to high energy physicists and mathematicians who have studied twisted SQFTs (descent relations)

- Not limited to twisted scenarios
- Can go very far in the case of (mixed) Holomorphic and/or Topological (HT) theories


## OUTLINES AND Punchlines 2/2

I. Introduce the eta-function and higher brackets
II. Computing the eta-function and generalizations
III. Holomorphic-Topological diagrams and integrals
IV. A non-renormalization theorem for HT theories
V. Applications to SQFTs

Three Takeaways

1. $\boldsymbol{\eta}$-vector exists and contains anomalies/OPEs/more
2. $\eta$-vector is computable, especially in HT scenarios
3. Non-renormalization theorem for HT theories

THE $\eta$-FUNCTION

## DeFORMATIONS OF QFTS

■ Given a QFT $T$, it can be deformed by turning on interactions

$$
\begin{equation*}
S_{T}+\sum_{i} g^{i} \int_{\mathbb{R}^{d}} \mathcal{O}_{i}(x) d^{d} x \tag{2}
\end{equation*}
$$

- $g^{i}$ are coordinates on theory space
- Work perturbatively in couplings $g^{i}$

■ Defines a formal pointed neighbourhood $\mathcal{D}[T]$ of $T$, consisting of all effective QFTs obtained by perturbative deformation of $T$

- Pointed because there is a distinguished point, called $T$.
- Formal because we only consider deformations in an infinitesimal nbd of $T$ (we are not at finite coupling).
- Think of formal/infinitesimal as synonym for "perturbative"


## The Beta Function

- Generic QFT (point) is not scale invariant
- Scale transformation on $T$ is traded for a change of the couplings e.g. integrating out DoF modifies couplings
- We encode infinitesimal scale transformations in vector field on theory space, the beta function

$$
\begin{equation*}
\boldsymbol{\beta}=\sum_{i} \beta^{i}(g) \frac{\partial}{\partial g^{i}} \tag{3}
\end{equation*}
$$

- Perturb around (typically free) scale-invariant theory, $\boldsymbol{\beta}=0$
- Deformations of $T$ preserving scale invariance are zeroes of $\beta$

■ The coefficients $\beta^{i}(g)$ are power series in $g$

$$
\begin{equation*}
\beta^{i}(g)=\underbrace{\left(d-\Delta_{i}\right)}_{\text {Classical }} g^{i}+O\left(g^{2}\right) \tag{4}
\end{equation*}
$$

- Tune relevant terms to 0 and study $\boldsymbol{\beta}$ as a measure of scale generated by "quantum effects"


## THE BV-BRST FORMALISM 1/2

■ Quantization of non-abelian gauge theories is hard: formulated redundantly in exchange for other properties

$$
\begin{equation*}
Z=\int[D A D \bar{\psi} D \psi] e^{-S[A, \bar{\psi}, \psi]}=: \int[D \Phi] e^{-S[\Phi]} \tag{5}
\end{equation*}
$$

- Introduce a gauge fixing procedure and Fadeev-Poppov ghosts $b$ and $c$

$$
\begin{equation*}
Z=\int\left[D \Phi D B_{A} d b_{A} d c^{\alpha}\right] e^{-S[\Phi]+i B_{A} F^{A}[\Phi]-b_{A} c^{\alpha} \delta_{\alpha} F^{A}[\Phi]} \tag{6}
\end{equation*}
$$

■ Gauge fixed action still has residual nilpotent odd global symmetry involving fields and ghosts, called BRST symmetry.

$$
\begin{align*}
\delta_{\mathrm{BRST}} \Phi & =-i \epsilon c^{\alpha} \delta_{\alpha} \Phi, & \delta_{\mathrm{BRST}} B_{A} & =0, \\
\delta_{\mathrm{BRST}} c^{\alpha} & =\frac{i}{2} \epsilon f_{\beta \gamma}^{\alpha} c^{\beta} c^{\gamma}, & \delta_{\mathrm{BRST}} b_{A} & =\epsilon B_{A}, \tag{7}
\end{align*}
$$

- Physical theory can be identified with $Q_{\mathrm{BRST}}$-cohomology


## THE BV-BRST FORMALISM 2/2

■ Focus on theories defined in BV-BRST formalism:

- $T$ is embedded in a bigger ambient theory $\widetilde{T}$ with ghosts, anti-ghosts, anti-fields, etc.
- Grassmann odd nilpotent symmetry $Q_{\mathrm{BRST}}$
- Observables in $T$ are recovered from $\widetilde{T}$ by taking $Q_{\text {BRST }}$ coho

$$
\begin{align*}
\mathrm{Ops}_{T} & =\left(\mathrm{Ops}_{\widetilde{T}}, Q_{\mathrm{BRST}}\right) \\
\operatorname{Int}_{T} & =\left(\mathrm{Ops}_{\widetilde{T}}[d x], \mathrm{d}+Q_{\mathrm{BRST}}\right) \tag{8}
\end{align*}
$$

■ i.e. we will work in BV formalism

- Essential to quantizing $p$-form gauge theories, theories which only close on-shell, field-dependent structure constants, or theories with other complicated constraints
- Not restricted to such complicated theories either


## THE ETA Function

■ Can compute analog of $\beta$ for any type of transformation.
Ex. Non-relativistic scale transformations $(t, x) \mapsto\left(\lambda^{z} t, \lambda x\right)$
Ex. Anomalous axial transformation on $\theta$ angle in gauge theory

- Consider $T \hookrightarrow\left(\widetilde{T}, Q_{\mathrm{BRST}}\right)$ described in a BRST formalism in terms of ambient $\widetilde{T}$
- To deform $T$, we deform $\widetilde{T}$ without breaking BRST symmetry
- Consider deformations of $\tilde{T}$ with Grassmann odd couplings, non-trivial ghost number, etc. This is a formal pointed dg-supermanifold $\mathcal{D}[\widetilde{T}]$.
■ BRST symmetry will be encoded in a vector field

$$
\begin{equation*}
\boldsymbol{\eta}=\sum_{i} \eta^{i}(g) \frac{\partial}{\partial g^{i}} \tag{9}
\end{equation*}
$$

- Linear term tells us if adding an interaction $\mathcal{I}$ explicitly/classically violates BRST symmetry
- Higher order terms do so "quantum mechanically"


## Higher Algebra

$\square$ Since $Q^{2}=0$, the eta function $\eta^{2}=0$.

- Wess-Zumino consistency condition for BRST symmetry
- Gives quadratic constraints on coefficient functions $\eta^{i}(g)$

$$
\begin{equation*}
\eta^{i}(g)=\sum_{n>0} \frac{1}{n!} \sum_{j_{1} \cdots j_{n}} \eta_{j_{1} \cdots j_{n}}^{i} g^{j_{1}} \cdots g^{j_{n}} \tag{10}
\end{equation*}
$$

■ Define the following multilinear operation Int ${ }^{\otimes n} \rightarrow$ Int

$$
\begin{equation*}
\left\{g^{j_{1}} \mathcal{I}_{j_{1}}, \cdots, g^{j_{n}} \mathcal{I}_{j_{n}}\right\}=\eta_{j_{1} \cdots j_{n}}^{i} g^{j_{1}} \cdots g^{j_{n}} \mathcal{I}_{i} \tag{11}
\end{equation*}
$$

- The BRST variation becomes

$$
\begin{equation*}
\eta \mathcal{I}=\{\mathcal{I}\}+\frac{1}{2!}\{\mathcal{I}, \mathcal{I}\}+\frac{1}{3!}\{\mathcal{I}, \mathcal{I}, \mathcal{I}\}+\ldots \tag{12}
\end{equation*}
$$

$$
\eta^{2}=0 \quad \Leftrightarrow
$$

The coefficients $\eta_{j_{1} \cdots j_{n}}^{i}$ and brackets $\{\cdot, \ldots, \cdot\}$ define an $L_{\infty}[1]$-algebra structure on In.

## Basic Eta-Function Calculation - General 1/2

$\square \eta$ is not just abstract fun, it is computable fun

- Correlation functions of $T$ deformed by $\mathcal{I}$ are correlation functions of $T$ with additional insertions

$$
\begin{equation*}
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \cdots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle_{T+\mathcal{I}}=\left\langle\mathcal{O}_{1}\left(x_{1}\right) \cdots \mathcal{O}_{n}\left(x_{n}\right) e^{g \int d^{d} x \mathcal{I}}\right\rangle_{T} \tag{13}
\end{equation*}
$$

- At linear order, the BRST anomaly generated by $\mathcal{I}_{i}$ is just

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left[Q, \mathcal{I}_{i}\right] \tag{14}
\end{equation*}
$$

- Write

$$
\begin{equation*}
\left[Q, \mathcal{I}_{i}\right]=\sum_{j} \eta_{i}^{j} \mathcal{I}_{j}+d \mathcal{J}_{i} \tag{15}
\end{equation*}
$$

■ In perturbation theory, higher order terms

$$
\begin{equation*}
O\left(g^{n}\right) \sim \int_{\mathbb{R}^{d n}} \mathcal{I}\left(y_{1}\right) \cdots \mathcal{I}\left(y_{n}\right) \tag{16}
\end{equation*}
$$

- Need regularization to avoid UV divergences from colliding $\mathcal{I}$


## Basic Eta-Function Calculation - General 2/2

■ E.g. at $O\left(g^{2}\right)$ we can regularize the deformation to

$$
\begin{equation*}
\int_{\mathbb{R}^{2 d}} f_{\epsilon}^{(2)}\left(x_{1}, x_{2}\right) \mathcal{I}\left(x_{1}\right) \mathcal{I}\left(x_{2}\right) \tag{17}
\end{equation*}
$$

■ Now we can compute

$$
\begin{align*}
& {\left.\left[Q, \int_{\mathbb{R}^{2 d}} f_{\epsilon}^{(2)}\left(x_{1}, x_{2}\right) \mathcal{I}\left(x_{1}\right) \mathcal{I}\left(x_{2}\right)\right]\right|_{d \mathcal{J}}}  \tag{18}\\
& \quad=-\int_{\mathbb{R}^{2 d}} d f_{\epsilon}^{(2)}\left(x_{1}, x_{2}\right)\left(\mathcal{I}\left(x_{1}\right) \mathcal{J}\left(x_{2}\right)+\mathcal{J}\left(x_{1}\right) \mathcal{I}\left(x_{2}\right)\right) \tag{19}
\end{align*}
$$

■ With a sharp cutoff (point-splitting) this becomes

$$
\begin{equation*}
\{\mathcal{I}, \mathcal{I}\}\left(x_{2}\right) \stackrel{\substack{\text { Sharp } \\ \text { Cutoft }}}{=} \int_{\left|x_{12}\right|=\epsilon} \mathcal{I}\left(x_{1}\right) \mathcal{J}\left(x_{2}\right)+\mathcal{J}\left(x_{1}\right) \mathcal{I}\left(x_{2}\right) \tag{20}
\end{equation*}
$$

- Anomaly appears in point-splitting regularization because total derivative terms give a boundary contribution.


## Basic Eta-Function Calculation - Concrete 1/2

■ 2d $S_{\text {Matter }}$ with $G$ global symmetry and $G$ gauge theory

$$
\begin{equation*}
S_{T}=-\frac{1}{4} \int d^{2} x F_{\mu \nu} F^{\mu \nu}+S_{\mathrm{Matter}} \tag{21}
\end{equation*}
$$

Ex. Free fermions with vector current $J_{a}^{\mu}=\bar{\psi} \gamma^{\mu} t_{a} \psi$.

- Study the interaction $\mathcal{I}=A_{\mu} J^{\mu}$

■ Add ghost and auxiliary fields $T \hookrightarrow(\widetilde{T}, Q)$

- BRST transformation of $\mathcal{I}$ gives:

$$
\begin{equation*}
\delta_{\mathrm{BRST}}\left(A_{\mu} J^{\mu}\right)=\left(\epsilon D_{\mu} c\right) J^{\mu}+A_{\mu}\left(i \epsilon g c J^{\mu}\right)=\epsilon \partial_{\mu} c J^{\mu} \tag{22}
\end{equation*}
$$

- See $\mathcal{I}$ is BRST-closed up to total derivative $\mathcal{J}=c J$
- Term can potentially cause BRST anomaly


## Basic Eta-Function Calculation - Concrete 2/2

■ The two-bracket receives a contribution from the 2d $J J$ OPE:

$$
\begin{align*}
\{\mathcal{I}, \mathcal{I}\}\left(x_{2}\right) & =\int_{\left|x_{12}\right|=\epsilon}: A J:\left(x_{1}\right): c J:\left(x_{2}\right)+: c J:\left(x_{1}\right): A J:\left(x_{2}\right) \\
& =\oint_{S_{x_{2}}^{1}}\left(: A\left(x_{1}\right) c\left(x_{2}\right):+: c\left(x_{1}\right) A\left(x_{2}\right):\right)\left\langle J\left(x_{1}\right) J\left(x_{2}\right)\right\rangle \\
& =\#: c d A:\left(x_{2}\right) . \tag{23}
\end{align*}
$$

- We use $J J \sim\left|x_{12}\right|^{-2}$, taylor expanded, and integrated by parts
- \# denotes combinatorial and rep-theoretic factors

■ Recover well-known 1-loop anomaly for $G$-gauge theory

$$
\begin{equation*}
\left\{A_{\mu} J^{\mu}, A_{\nu} J^{\nu}\right\}=\# c F_{12} \tag{24}
\end{equation*}
$$

- In $2 k$-dim, you recover anomaly from ( $k+1$ )-ary bracket


## Perturbative Corrections to Q

■ Callan-Symanzik equation says renormalized correlators are independent of (arbitrary) renormalization scale $\mu$ :

$$
\begin{equation*}
\mu \frac{d}{d \mu} G^{(n)}=\left(\mu \frac{\partial}{\partial \mu}+\boldsymbol{\beta}+\gamma\right) G^{(n)}=0 \tag{25}
\end{equation*}
$$

■ For BRST symmetry, we have $\mathcal{L}_{\eta}$. Nilpotency implies:

$$
\begin{equation*}
\mathcal{L}_{\boldsymbol{\eta}}^{2}=\{\boldsymbol{\eta}, \mathbf{Q}\}+\mathbf{Q}^{2}=0 \tag{26}
\end{equation*}
$$

- Coefficients $Q^{i}(g)$ of $Q$ can be identified as coefficients for multilinear operations $\mathrm{Int}^{\otimes n} \otimes \mathrm{Op} \rightarrow \mathrm{Op}$
- Local operators have a (right) $L_{\infty}$-module structure

$$
\begin{equation*}
\boldsymbol{Q} \mathcal{O}=\{\mathcal{O}\}+\{\mathcal{I}, \mathcal{O}\}+\frac{1}{2}\{\mathcal{I}, \mathcal{I}, \mathcal{O}\}+\cdots \tag{27}
\end{equation*}
$$

■ Can systematically compute corrections to "semi-chiral ring" in SUSY Twists

## Recap and Further Connections

- Recap:
- Deformations are integral to our understanding of QFT
- Working in a BV-BRST formalism, we can introduce $\eta$ that tracks violation of BRST symmetry due to interactions
- $\eta$ defines an $L_{\infty}$-algebra on interactions and Maurer-Cartan equation is solved by well-defined deformations
- $\eta$ contains useful information like anomalies

■ Descent operations in twisted theories

- Higher brackets appear by colliding/integrating descendants
- E.g. OPE and secondary product of cohomological TFTs is a 2-ary bracket
- [Bomans, Wu] compute higher-central charges ( $a$ and $c$ ) of 4d SUSY gauge theories from brackets


## GENERALIZATIONS

■ Can consider position dependent interactions: causes momentum-inflow $p^{i}$ at each vertex

- $L_{\infty}$-brackets extended to $\otimes_{i} \operatorname{In}_{p^{(i)}} \rightarrow \operatorname{In}_{\sum_{i} p^{(i)}}$
- Momentum-coloured operad

$$
\begin{equation*}
\left\{\mathcal{I}_{i_{1} p^{(1)}} \mathcal{I}_{i_{2} p^{(2)}} \cdots p^{(n-1)} \mathcal{I}_{i_{n}}\right\} \tag{28}
\end{equation*}
$$

■ Distinguished subcase: holomorphic theories with holomorphic momentum $\lambda$ recovers $\lambda$-brackets and higher $n$-Lie or homotopy conformal algebras
■ Auxiliary and defect systems: the brackets of $T \times T_{\text {probe }}$ extract information about $T$
Ex. 't Hooft anomaly of $S_{\text {Matter }}$ is apparent in the non-trivial bracket when coupled to $G$-gauge theory $T_{\text {probe }}$
Ex. If $T$ is topological $\mathbf{Q M}$, brackets of $T$ recover Moyal commutator. Brackets with an auxiliary fermion recovers full Moyal-star product. 1d-topological defect brackets have $A_{\infty}$.

## HOLOMORPHIC-TOPOLOGICAL

 THEORIES
## Holomorphic-Topological Theories

■ "Holomorphic-Topological" means flat spacetime has structure of $\mathbb{C}^{H} \times \mathbb{R}^{T}$ with coords $\left(x^{\mathbb{C}}, \bar{x}^{\mathbb{C}}, x^{\mathbb{R}}\right)$

- Anti-holomorphic translations in $\mathbb{C}^{H}$ and translations in $\mathbb{R}^{T}$ are gauge symmetries ( $Q_{\mathrm{BRST}}-$ exact)
- Interested in theories with action

$$
\begin{equation*}
\int_{\mathbb{C}^{H} \times \mathbb{R}^{T}}[(\Phi, \mathrm{~d} \Phi)+\mathcal{I}(\Phi)] d^{H} x^{\mathbb{C}} \tag{29}
\end{equation*}
$$

- $\Phi$ is a "superfield," and $d x^{\mathbb{R}}$ and $d \bar{x}^{\mathbb{C}}$ are "superspace coordinates" (form-valued fields are superfields).

■ Appears in holomorphic-topological twists of SUSY theories.
■ In free theory, BRST closed superfields satisfy descent:

$$
\begin{equation*}
Q \mathcal{O}+\mathrm{d} \mathcal{O}=0 \tag{30}
\end{equation*}
$$

- Interaction $\mathcal{I}(\Phi)$ is BRST-closed up to total derivative.


## HoLOMORPHIC-TOPOLOGICAL INTEGRALS

■ In such theories, we will be interested in brackets of the form

$$
\begin{equation*}
\left\{\mathcal{O}_{1 \lambda_{1} \cdots \lambda_{n-1}} \mathcal{O}_{n}\right\} \tag{31}
\end{equation*}
$$

■ The Feynman integrals that contribute will take the form:

$$
I_{\Gamma}(\lambda ; z)=\int_{\mathcal{M}^{\left|\Gamma_{0}\right|-1}}\left[\prod_{v \in \Gamma_{0}}^{v \not v_{*}} \mathrm{~d} \operatorname{Vol}_{v} e^{\lambda_{v} \cdot x_{v}^{c}}\right] \mathrm{d}\left[\prod_{e \in \Gamma_{1}} P_{\epsilon}\left(x_{e(0)}-x_{e(1)}+z_{e}\right)\right]
$$

■ Let's count the form degree of the integrand:

- (Regulated) propagator $P_{\epsilon}$ is an ( $H+T-1$ )-form
- $(H+T) \times\left(\left|\Gamma_{0}\right|-1\right)$ integration variables: one for each vertex of graph, and throw one vertex away by translation symmetry.
- $\left(\left|\Gamma_{1}\right|-1\right)$ regulated propagators and one $(H+T)$-form cut propagator $\mathrm{d} P_{\epsilon}(x)$


## Holomorphic-Topological Feynman Diagrams

■ Non-vanishing Feynman diagrams are $n$-Laman graphs

- Global Constraint

$$
\begin{equation*}
n\left|\Gamma_{0}\right|=(n-1)\left|\Gamma_{1}\right|+n+1 \tag{32}
\end{equation*}
$$

- Local Constraint For subgraphs $\Gamma[S]$

$$
\begin{equation*}
n\left|\Gamma[S]_{0}\right| \geq(n-1)\left|\Gamma[S]_{1}\right|+n+1 \tag{33}
\end{equation*}
$$

- In particular, $n=H+T$.


■ Call a graph "almost $n$-Laman" of degree $\tau(\Gamma)$ if

$$
\begin{equation*}
n\left|\Gamma_{0}\right|=(n-1)\left|\Gamma_{1}\right|+n+1+\tau(\Gamma) \tag{34}
\end{equation*}
$$

## Quadratic Identities

■ $I_{\Gamma}(\lambda ; z)$ has a number of symmetries/identities: symmetries from the graph, and under shifts of $z_{e}$.

■ Feynman integrals (more generally diagrams) satisfy infinite collections of (geometric) quadratic identities associated to each degree-1 almost-Laman graph:

$$
\sum_{\operatorname{Laman} S} \sigma(\Gamma, S) I_{\Gamma[S]}(\lambda+\partial ; z) \cdot I_{\Gamma(S)}(\lambda ; z)=0
$$

- Identities imply (higher)-associativity of the accompanying brackets in a diagram-by-diagram way
- Can bootstrap all Feynman integrals from these identities?


## A NoN-RENORMALIZATION THEOREM $1 / 2$

■ Many interesting scenarios with mixed $H T$ degree.
Ex. $(1+1)$ d holomorphic boundary of a (2+1)d TFT
Useful to "forget" some of the structure of the bulk TFT.
■ Trade $T=2$ top. directions for an $H=1$ holo. direction

- Topological superfield $\Phi$ splits into two fields in the holomorphic theory, a $(0, *)$-form and a ( $1, *$ )-part:

$$
\begin{equation*}
\Phi=\Phi^{(0)}+\Phi^{(1)} d z \tag{36}
\end{equation*}
$$

- Topological superfield condition also splits

$$
\begin{equation*}
\left(Q+\mathrm{d}_{\mathrm{top}}\right) \Phi=\left(Q+\mathrm{d}_{\text {Holo }}\right) \Phi+\partial \Phi=0 \tag{37}
\end{equation*}
$$

$\square \partial \Phi$ term is now interpreted as a BRST anomaly due to the holomorphic part of the kinetic term

- i.e. all top. theory calculations are replaced by calculations in identical holo. theory with extra ( $\Phi, \partial \Phi$ ) interaction


## A Non-Renormalization Theorem 2/2

■ Consider a calculation in $(H, T \geq 2)$

- Convert to an equivalent calculation in $(H+1, T-2)$-theory
( $H, T \geq \underset{\Gamma}{2}$ )-theory

$$
\begin{gather*}
(H+1, T-2) \text {-theory }  \tag{38}\\
\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}
\end{gather*}
$$

- $\gamma_{i}$ will correspond $\Gamma$ with edges $e_{i} \in \Gamma_{1}$ broken into chains of edges $\left\{f_{i, 1}, \ldots, f_{i, m}\right\}$ in all possible ways
- Each vertex has "two-point interaction" ( $\Phi, \partial \Phi$ )
- Each $\gamma_{i}$ has $\left|\Gamma_{1}\right|+k$ edges and $\left|\Gamma_{0}\right|+k$ vertices for some $k \geq 0$.

■ If $\gamma_{i}$ are non-vanishing, they must be $(n-1)$-Laman graphs.

- Putting the two conditions together, $\Gamma$ must be a tree for non-vanishing contribution

Non-Renormalization Theorem
All loop graphs in ( $H, T \geq 2$ )-theories must vanish.

Applications to SQFTS

## SUSY and the Semi-Chiral Ring

■ Supersymmetry enhances Poincaré symmetry

$$
\begin{align*}
\left\{Q_{\alpha}^{A}, \bar{Q}_{\dot{\beta} B}\right\} & =\delta_{B}^{A} P_{\alpha \dot{\beta}},  \tag{39}\\
\left\{Q_{\alpha}^{A}, Q_{\beta}^{B}\right\} & =\left\{\bar{Q}_{\dot{\alpha} A}, \bar{Q}_{\dot{\beta} B}\right\}=0 . \tag{40}
\end{align*}
$$

- In Euclidean signature, $\operatorname{Spin}(4) \cong S U(2)_{L} \times S U(2)_{R}$
- $Q_{\alpha}$ and $\bar{Q}_{\dot{\alpha}}$ are two-component spinors

■ Pick some supercharge $Q=Q_{-}$

- The semi-chiral ring of $Q$ consists of all $Q$-invariant operators

$$
\begin{equation*}
[Q, \mathcal{O}]=0 \tag{41}
\end{equation*}
$$

- If SUSY inn't broken (so that $Q|0\rangle=0$ ), then a product of $Q$-invariant operators satisfies

$$
\begin{equation*}
\langle(\mathcal{O}+[Q, \Lambda]) \cdots\rangle=\langle\mathcal{O} \cdots\rangle+\langle[Q, \Lambda \cdots]\rangle=\langle\mathcal{O} \cdots\rangle, \tag{42}
\end{equation*}
$$

So doesn't care about operators modulo $\mathcal{O} \sim \mathcal{O}+[Q, \Lambda]$.

## From Susy to the Holomorphic Twist

■ Given any SQFT, we obtain the Holomorphic Twist by taking cohomology of any one nilpotent supercharge, e.g. $Q:=Q_{-}$

$$
\begin{equation*}
Q^{2}=0, \quad Q \text {-Closed: }[Q, \mathcal{O}]=0, \quad Q \text {-Exact: }[Q, \Lambda] \tag{43}
\end{equation*}
$$

- Most available \& least forgetful twist: only needs $\mathcal{N}=1$ SUSY.
- Cohomology isolates the semi-chiral ring

■ Anti-holomorphic translations are $Q$-exact, so twisted theory is (cohomologically) holomorphic

$$
\begin{equation*}
\left\{Q, \bar{Q}_{\dot{\alpha}}\right\}=\partial_{\bar{z}^{\dot{\alpha}}} \tag{44}
\end{equation*}
$$

■ Operators captured by holomorphic twist are those counted by the superconformal index [Saberi, williams], [Raghavendran]

$$
\begin{equation*}
\mathcal{I}=\operatorname{Tr}(-1)^{F} p^{j_{1}+j_{2}-r / 2} q^{j_{1}-j_{2}-r / 2} e^{-\beta\left\{Q_{-}, S_{+}\right\}} \tag{45}
\end{equation*}
$$

## TwISTING $\mathcal{N}=1 \mathbf{S Y M}$

■ $\mathcal{N}=1 \mathbf{S Y M}$ is $S U(N)$ gauge theory with an adjoint fermion

$$
\begin{equation*}
\mathcal{L}=\int d^{2} \theta \frac{-i}{8 \pi} \tau \operatorname{tr} W_{\alpha} W^{\alpha}+\text { c.c. } \tag{46}
\end{equation*}
$$

■ Twist is identified (in a non-trivial way) with a holomorphic bc system

- Fields are collected in adjoint bosonic superfield $b$ and (co)adjoint fermionic superfield $c$.
- The Lagrangian of this theory is

$$
\begin{equation*}
\mathcal{L}_{\text {twisted }}=\operatorname{Tr} b\left(\bar{\partial} c-\frac{1}{2}[c, c]\right)+\tau \operatorname{Tr} \partial_{\alpha} c \partial^{\alpha} c \tag{47}
\end{equation*}
$$

- Free cohomology

$$
\begin{equation*}
\mathbb{C}\left[b, \partial_{\alpha} b, \partial_{\alpha} \partial_{\beta} b, \ldots, \partial_{\alpha} c, \partial_{\alpha} \partial_{\beta} c, \ldots\right]^{G} \tag{48}
\end{equation*}
$$

- Derivative of the stress tensor is $\partial_{\alpha} S^{\alpha}=\partial_{\alpha} b_{A} \partial^{\alpha} c^{A}$.


## Holomorphic Confinement

■ $\partial_{\alpha} S^{\alpha}$ generates (among other things) all the remaining spacetime symmetries (e.g. holo. translations/rotations).

- Adding one loop corrections, we find $\partial_{\alpha} S^{\alpha}=Q \operatorname{Tr} b^{2}$
- Exactness of $\partial_{\alpha} S^{\alpha}$ means local operators are invariant under remaining spacetime transformations.
- Theory becomes topological at one loop!
- Being topological is compatible with confinement: if topological in the UV, then topological in the IR.
- Constrains IR physics: the holomorphic twist of the IR must also be topological.
- We call this Holomorphic

Confinement [Budzik, Gaiotto, JK, Williams, $\mathrm{Wu}, \mathrm{Yu}]$


Final Recap

## RECAP

I. Introduced $\eta$-function; interactions have $L_{\infty}$-algebra structure, tracks violation of BRST symmetry by interactions
II. $\eta$-function contains familiar data like anomaly data, and briefly discussed the relation to twisted SQFTs
III. Introduced holomorphic-topological theories, and showed brackets are very strongly constrained (Laman graphs)
IV. Laman graphs prove associativity relations, and no perturbative corrections when $T \geq 2$ topological directions.
V. Application to Super-Yang Mills and "holomorphic confinement"

## Three Takeaways

1. $\eta$-vector exists and contains anomalies/OPEs/more
2. $\eta$-vector is computable, especially in HT scenarios
3. Non-renormalization theorem for HT theories

Fin

