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Outlines and Punchlines 1/2

Discuss ideas from formal deformation theory in QFT
▶ Familiar example is Ocneanu rigidity of fusion categories

QFTs have “higher” multilinear k-ary operations (“brackets”)

{−,−, . . . ,−} (1)

▶ Control: deformations, (generalized) OPEs, and anomalies
▶ ∞-algebras, factorization algebras, and operads

Familiar to high energy physicists and mathematicians who
have studied twisted SQFTs (descent relations)
▶ Not limited to twisted scenarios

Can go very far in the case of (mixed) Holomorphic and/or
Topological (HT) theories
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Outlines and Punchlines 2/2

I. Introduce the eta-function and higher brackets
II. Computing the eta-function and generalizations
III. Holomorphic-Topological diagrams and integrals
IV. A non-renormalization theorem for HT theories
V. Applications to SQFTs

Three Takeaways

1. η-vector exists and contains anomalies/OPEs/more
2. η-vector is computable, especially in HT scenarios
3. Non-renormalization theorem for HT theories
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The η-Function



Deformations of QFTs

Given a QFT T , it can be deformed by
turning on interactions

ST +
∑

i
gi

∫
Rd

Oi(x)ddx (2)

▶ gi are coordinates on theory space
▶ Work perturbatively in couplings gi

Defines a formal pointed neighbourhood D[T ] of T ,
consisting of all effective QFTs obtained by perturbative
deformation of T
▶ Pointed because there is a distinguished point, called T .
▶ Formal because we only consider deformations in an
infinitesimal nbd of T (we are not at finite coupling).

▶ Think of formal/infinitesimal as synonym for “perturbative”
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The Beta Function

Generic QFT (point) is not scale invariant
▶ Scale transformation on T is traded for a change of the
couplings e.g. integrating out DoF modifies couplings

We encode infinitesimal scale transformations in vector field
on theory space, the beta function

β =
∑

i
βi(g) ∂

∂gi (3)

▶ Perturb around (typically free) scale-invariant theory, β = 0
▶ Deformations of T preserving scale invariance are zeroes of β

The coefficients βi(g) are power series in g
βi(g) = (d −∆i)︸ ︷︷ ︸

Classical

gi + O(g2) (4)

▶ Tune relevant terms to 0 and study β as a measure of scale
generated by “quantum effects”
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The BV-BRST Formalism 1/2

Quantization of non-abelian gauge theories is hard:
formulated redundantly in exchange for other properties

Z =

∫
[DADψ̄Dψ]e−S [A,ψ̄,ψ] =:

∫
[DΦ]e−S [Φ] , (5)

▶ Introduce a gauge fixing procedure and Fadeev-Poppov
ghosts b and c

Z =

∫
[DΦDBAdbAdcα]e−S [Φ]+iBAFA[Φ]−bAcαδαFA[Φ] (6)

Gauge fixed action still has residual nilpotent odd global
symmetry involving fields and ghosts, called BRST symmetry.

δBRSTΦ = −iεcαδαΦ , δBRSTBA = 0 ,

δBRSTcα =
i
2
εf αβγcβcγ , δBRSTbA = εBA , (7)

▶ Physical theory can be identified with QBRST-cohomology
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The BV-BRST Formalism 2/2

Focus on theories defined in BV-BRST formalism:
▶ T is embedded in a bigger ambient theory T̃ with ghosts,
anti-ghosts, anti-fields, etc.

▶ Grassmann odd nilpotent symmetry QBRST

▶ Observables in T are recovered from T̃ by taking QBRST coho

OpsT = (OpsT̃ ,QBRST)

IntT = (OpsT̃ [dx], d+QBRST) (8)

i.e. we will work in BV formalism
▶ Essential to quantizing p-form gauge theories, theories which
only close on-shell, field-dependent structure constants, or
theories with other complicated constraints

▶ Not restricted to such complicated theories either
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The Eta Function

Can compute analog of β for any type of transformation.
Ex. Non-relativistic scale transformations (t, x) 7→ (λzt, λx)
Ex. Anomalous axial transformation on θ angle in gauge theory

Consider T ↪→ (T̃ ,QBRST) described in a BRST formalism in
terms of ambient T̃
▶ To deform T , we deform T̃ without breaking BRST symmetry
▶ Consider deformations of T̃ with Grassmann odd couplings,
non-trivial ghost number, etc. This is a formal pointed
dg-supermanifold D[T̃ ].

BRST symmetry will be encoded in a vector field

η =
∑

i
ηi(g) ∂

∂gi (9)

▶ Linear term tells us if adding an interaction I
explicitly/classically violates BRST symmetry

▶ Higher order terms do so “quantum mechanically”
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Higher Algebra

Since Q2 = 0, the eta function η2 = 0.
▶ Wess-Zumino consistency condition for BRST symmetry
▶ Gives quadratic constraints on coefficient functions ηi(g)

ηi(g) =
∑
n>0

1
n!

∑
j1···jn

ηi
j1···jn

gj1 · · · gjn (10)

Define the following multilinear operation Int⊗n → Int
{gj1Ij1 , · · · , gjnIjn} = ηi

j1···jn gj1 · · · gjnIi (11)

▶ The BRST variation becomes
η I = {I}+ 1

2!
{I, I}+ 1

3!
{I, I, I}+ . . . (12)

η2 = 0 ⇔ The coefficients ηi
j1···jn and brackets {·, . . . , ·}

define an L∞[1]-algebra structure on In.
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η-FunctionCalculations andData



Basic Eta-Function Calculation - General 1/2

η is not just abstract fun, it is computable fun
Correlation functions of T deformed by I are correlation
functions of T with additional insertions
〈O1(x1) · · · On(xn)〉T+I =

〈
O1(x1) · · · On(xn)eg

∫
ddx I

〉
T
(13)

▶ At linear order, the BRST anomaly generated by Ii is just∫
Rd
[Q, Ii ] . (14)

▶ Write
[Q, Ii ] =

∑
j
ηj

i Ij +dJi (15)

In perturbation theory, higher order terms

O(gn) ∼
∫
Rdn

I(y1) · · · I(yn) (16)

▶ Need regularization to avoid UV divergences from colliding I
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Basic Eta-Function Calculation - General 2/2

E.g. at O(g2) we can regularize the deformation to∫
R2d

f (2)ϵ (x1, x2)I(x1)I(x2) (17)

Now we can compute[
Q,

∫
R2d

f (2)ϵ (x1, x2) I(x1) I(x2)
] ∣∣

dJ (18)

= −
∫
R2d

df (2)ϵ (x1, x2)(I(x1)J (x2) + J (x1)I(x2)) (19)

With a sharp cutoff (point-splitting) this becomes

{I, I}(x2)
Sharp
Cutoff=

∫
|x12|=ϵ

I(x1)J (x2) + J (x1)I(x2) (20)

▶ Anomaly appears in point-splitting regularization because
total derivative terms give a boundary contribution.

10 26



Basic Eta-Function Calculation - Concrete 1/2

2d SMatter with G global symmetry and G gauge theory

ST = −1
4

∫
d2x FµνFµν + SMatter (21)

Ex. Free fermions with vector current Jµ
a = ψ̄γµtaψ.

▶ Study the interaction I = AµJµ

Add ghost and auxiliary fields T ↪→ (T̃ ,Q)
▶ BRST transformation of I gives:

δBRST(AµJµ) = (εDµc)Jµ + Aµ(iεgcJµ) = ε∂µcJµ , (22)

▶ See I is BRST-closed up to total derivative J = cJ
▶ Term can potentially cause BRST anomaly
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Basic Eta-Function Calculation - Concrete 2/2

The two-bracket receives a contribution from the 2d JJ OPE:

{I, I}(x2) =

∫
|x12|=ϵ

:AJ:(x1) :cJ:(x2)+ :cJ:(x1) :AJ:(x2)

=

∮
S1

x2

( :A(x1)c(x2): + :c(x1)A(x2): ) 〈J (x1)J (x2)〉

= # :c dA: (x2) . (23)

▶ We use JJ ∼ |x12|−2, taylor expanded, and integrated by parts
▶ # denotes combinatorial and rep-theoretic factors

Recover well-known 1-loop anomaly for G-gauge theory

{AµJµ,AνJ ν} = # cF12 . (24)

▶ In 2k-dim, you recover anomaly from (k + 1)-ary bracket
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Perturbative Corrections to Q

Callan-Symanzik equation says renormalized correlators are
independent of (arbitrary) renormalization scale µ:

µ
d

dµ
G(n) =

(
µ
∂

∂µ
+ β + γ

)
G(n) = 0 (25)

For BRST symmetry, we have Lη . Nilpotency implies:

L2
η = {η,Q}+ Q2 = 0 (26)

▶ Coefficients Qi(g) of Q can be identified as coefficients for
multilinear operations Int⊗n ⊗ Op → Op

▶ Local operators have a (right) L∞-module structure

Q O = {O}+ {I,O}+ 1
2
{I, I,O}+ · · · . (27)

Can systematically compute corrections to “semi-chiral ring”
in SUSY Twists
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Recap and Further Connections

Recap:
▶ Deformations are integral to our understanding of QFT
▶ Working in a BV-BRST formalism, we can introduce η that
tracks violation of BRST symmetry due to interactions

▶ η defines an L∞-algebra on interactions and Maurer-Cartan
equation is solved by well-defined deformations

▶ η contains useful information like anomalies

Descent operations in twisted theories
▶ Higher brackets appear by colliding/integrating descendants
▶ E.g. OPE and secondary product of cohomological TFTs is a
2-ary bracket

▶ [Bomans, Wu] compute higher-central charges (a and c) of 4d
SUSY gauge theories from brackets
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Generalizations

Can consider position dependent interactions: causes
momentum-inflow pi at each vertex
▶ L∞-brackets extended to ⊗iInp(i) → In∑

i p(i)

▶ Momentum-coloured operad
{Ii1 p(1) Ii2 p(2) . . . p(n−1) Iin} (28)

Distinguished subcase: holomorphic theories with
holomorphic momentum λ recovers λ-brackets and higher
n-Lie or homotopy conformal algebras
Auxiliary and defect systems: the brackets of T × Tprobe
extract information about T
Ex. ’t Hooft anomaly of SMatter is apparent in the non-trivial

bracket when coupled to G-gauge theory Tprobe

Ex. If T is topological QM, brackets of T recover Moyal
commutator. Brackets with an auxiliary fermion recovers full
Moyal-star product. 1d-topological defect brackets have A∞.
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Holomorphic-Topological
Theories



Holomorphic-Topological Theories

“Holomorphic-Topological” means flat spacetime has
structure of CH × RT with coords (xC, x̄C, xR)
▶ Anti-holomorphic translations in CH and translations in RT

are gauge symmetries (QBRST-exact)
▶ Interested in theories with action∫

CH ×RT
[(Φ, dΦ) + I(Φ)] dHxC (29)

▶ Φ is a “superfield,” and dxR and dx̄C are “superspace
coordinates” (form-valued fields are superfields).

Appears in holomorphic-topological twists of SUSY theories.

In free theory, BRST closed superfields satisfy descent:

Q O+ dO = 0 (30)

▶ Interaction I(Φ) is BRST-closed up to total derivative.
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Holomorphic-Topological Integrals

In such theories, we will be interested in brackets of the form

{O1 λ1 . . . λn−1 On} (31)

The Feynman integrals that contribute will take the form:

IΓ(λ; z) =
∫
M|Γ0|−1

[v ̸=v∗∏
v∈Γ0

dVolveλv ·xC
v

]
d

[∏
e∈Γ1

Pϵ(xe(0) − xe(1) + ze)

]

Let’s count the form degree of the integrand:
▶ (Regulated) propagator Pϵ is an (H + T − 1)-form
▶ (H + T )× (|Γ0| − 1) integration variables: one for each vertex
of graph, and throw one vertex away by translation symmetry.

▶ (|Γ1| − 1) regulated propagators and one (H + T )-form cut
propagator dPϵ(x)

17 26



Holomorphic-Topological Feynman Diagrams

Non-vanishing Feynman diagrams are n-Laman graphs
▶ Global Constraint

n|Γ0| = (n − 1)|Γ1|+ n + 1 (32)

▶ Local Constraint For subgraphs Γ[S ]

n|Γ[S ]0| ≥ (n − 1)|Γ[S ]1|+ n + 1 (33)

▶ In particular, n = H + T .

Call a graph “almost n-Laman” of degree τ(Γ) if

n|Γ0| = (n − 1)|Γ1|+ n + 1 + τ(Γ) (34)
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Quadratic Identities

IΓ(λ; z) has a number of symmetries/identities: symmetries
from the graph, and under shifts of ze.

Feynman integrals (more generally diagrams) satisfy infinite
collections of (geometric) quadratic identities associated to
each degree-1 almost-Laman graph:∑

Laman S
σ(Γ,S)IΓ[S ] (λ+ ∂; z) · IΓ(S) (λ; z) = 0 . (35)

▶ Identities imply (higher)-associativity of the accompanying
brackets in a diagram-by-diagram way

▶ Can bootstrap all Feynman integrals from these identities?
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A Non-Renormalization Theorem 1/2

Many interesting scenarios with mixed HT degree.
Ex. (1+1)d holomorphic boundary of a (2+1)d TFT

Useful to “forget” some of the structure of the bulk TFT.

Trade T = 2 top. directions for an H = 1 holo. direction
▶ Topological superfield Φ splits into two fields in the
holomorphic theory, a (0, ∗)-form and a (1, ∗)-part:

Φ = Φ(0) +Φ(1)dz . (36)

▶ Topological superfield condition also splits
(Q + dtop)Φ = (Q + dHolo)Φ + ∂Φ = 0 . (37)

∂Φ term is now interpreted as a BRST anomaly due to the
holomorphic part of the kinetic term
▶ i.e. all top. theory calculations are replaced by calculations in
identical holo. theory with extra (Φ, ∂Φ) interaction
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A Non-Renormalization Theorem 2/2

Consider a calculation in (H ,T ≥ 2)
▶ Convert to an equivalent calculation in (H + 1,T − 2)-theory

(H ,T ≥ 2)-theory
Γ

⇝ (H + 1,T − 2)-theory
{γ1, γ2, . . . }

(38)

▶ γi will correspond Γ with edges ei ∈ Γ1 broken into chains of
edges {fi,1, . . . , fi,m} in all possible ways

▶ Each vertex has “two-point interaction” (Φ, ∂Φ)
▶ Each γi has |Γ1|+ k edges and |Γ0|+ k vertices for some k ≥ 0.

If γi are non-vanishing, they must be (n − 1)-Laman graphs.
▶ Putting the two conditions together, Γ must be a tree for
non-vanishing contribution

Non-Renormalization Theorem
All loop graphs in (H ,T ≥ 2)-theories must vanish.
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Applications to SQFTs



SUSY and the Semi-Chiral Ring

Supersymmetry enhances Poincaré symmetry

{QA
α , Q̄β̇B} = δA

BPαβ̇ , (39)

{QA
α ,QB

β } = {Q̄α̇A, Q̄β̇B} = 0 . (40)

▶ In Euclidean signature, Spin(4) ∼= SU (2)L × SU (2)R

▶ Qα and Q̄α̇ are two-component spinors

Pick some supercharge Q = Q−
▶ The semi-chiral ring of Q consists of all Q-invariant operators

[Q,O] = 0 (41)
▶ If SUSY isn’t broken (so that Q |0〉 = 0), then a product of

Q-invariant operators satisfies

〈(O+[Q,Λ]) · · ·〉 = 〈O · · ·〉+ 〈[Q,Λ · · · ]〉 = 〈O · · ·〉 , (42)

So doesn’t care about operators modulo O ∼ O+[Q,Λ].
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From SUSY to the Holomorphic Twist

Given any SQFT, we obtain the Holomorphic Twist by taking
cohomology of any one nilpotent supercharge, e.g. Q := Q−

Q2 = 0 , Q-Closed: [Q,O] = 0 , Q-Exact: [Q,Λ] , (43)

▶ Most available & least forgetful twist: only needs N = 1 SUSY.
▶ Cohomology isolates the semi-chiral ring

Anti-holomorphic translations are Q-exact, so twisted
theory is (cohomologically) holomorphic

{Q, Q̄α̇} = ∂z̄α̇ (44)

Operators captured by holomorphic twist are those counted
by the superconformal index [Saberi, Williams], [Raghavendran]

I = Tr(−1)Fpj1+j2−r/2qj1−j2−r/2e−β{Q−,S+} (45)
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TwistingN = 1 SYM

N = 1 SYM is SU (N ) gauge theory with an adjoint fermion

L =

∫
d2θ

−i
8π
τ trWαW α + c.c. (46)

Twist is identified (in a non-trivial way) with a holomorphic
bc system
▶ Fields are collected in adjoint bosonic superfield b and
(co)adjoint fermionic superfield c.

The Lagrangian of this theory is

Ltwisted = Tr b
(
∂̄c − 1

2
[c, c]

)
+ τ Tr ∂αc ∂αc . (47)

▶ Free cohomology

C[b, ∂αb, ∂α∂βb, . . . , ∂αc, ∂α∂βc, . . . ]G (48)
▶ Derivative of the stress tensor is ∂αSα = ∂αbA∂

αcA.
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Holomorphic Confinement

∂αSα generates (among other things) all the remaining
spacetime symmetries (e.g. holo. translations/rotations).
Adding one loop corrections, we find ∂αSα = Q Tr b2

▶ Exactness of ∂αSα means local operators are invariant under
remaining spacetime transformations.

▶ Theory becomes topological at one loop!

Being topological is compatible with
confinement: if topological in the UV,
then topological in the IR.
▶ Constrains IR physics: the
holomorphic twist of the IR must
also be topological.

▶ We call this Holomorphic
Confinement [Budzik, Gaiotto, JK, Williams,
Wu, Yu]
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Final Recap



Recap

I. Introduced η-function; interactions have L∞-algebra
structure, tracks violation of BRST symmetry by interactions

II. η-function contains familiar data like anomaly data, and
briefly discussed the relation to twisted SQFTs

III. Introduced holomorphic-topological theories, and showed
brackets are very strongly constrained (Laman graphs)

IV. Laman graphs prove associativity relations, and no
perturbative corrections when T ≥ 2 topological directions.

V. Application to Super-Yang Mills and “holomorphic
confinement”

Three Takeaways

1. η-vector exists and contains anomalies/OPEs/more
2. η-vector is computable, especially in HT scenarios
3. Non-renormalization theorem for HT theories
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