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OUTLINES AND PUNCHLINES 1/2

m Discuss ideas from formal deformation theory in QFT
» Familiar example is Ocneanu rigidity of fusion categories

> Ocneanu rigidity is 't Hooft anomaly matching in QFT

m QFTs have “higher” multilinear k-ary operations (“brackets”)

{_7_7"'7_} (1)

» Control: deformations, (generalized) OPEs, and anomalies
> Satisfy associativity relations, generalizing Jacobi identity
m Familiar to high energy physicists who have studied twisted

SQFTs (descent relations)
» Not limited to twisted scenarios

» Can go very far in the case of HT theories

m Systematically compute the “semi-chiral” or J--BPS
operators in supersymmetric QFTs



OUTLINES AND PUNCHLINES 2/2

l. Introduce the n-function and higher brackets
II. Compute the n-function and generalizations
[Il. Twisted SQFTs
IV. Cohomology and Confinement

Three Takeaways

1. QFTs have higher brackets, defined by the n-function, which
contain OPEs/anomalies/etc.

2. m-vector is very computable, especially in HT scenarios.
3. Systematic computation of semi-chiral ring + corrections




THE 77-FUNCTION




DEFORMATIONS OF QFTS

m Given a QFT T, it can be deformed by
turning on interactions

> ¢’ are “coordinates” on “theory space”

ST—i—Zgi /Rdl'i(x)ddx (2)

> Work perturbatively in couplings ¢°
m Defines a formal pointed neighbourhood D[ T] of T, of all
effective QFTs obtained by perturbative deformation of T

>

|

Neighbourhood includes tangent space and all “higher
tangent spaces” to the space of theories.

Tangent space to space of theories are interactions

» Infinitesimally captures curvature of space of theories.



THE BETA FUNCTION

m Generic QFT (point) is not scale invariant
> Scale transformation on T is traded for a change of the
couplings e.g. integrating out DoF modifies couplings

m We encode infinitesimal scale transformations in a vector
field on theory space, the beta function

0
B=> B934

> Perturb around (typically free) scale-invariant theory, 3 =0

» Deformations of T preserving scale invariance are zeroes of 3
m The coefficients 3?(g) are power series in g

B'(9) = (d— Ay ¢+ O(g%) (&)
Classical Quantum

» Usually tune relevant terms to 0 and study 3 as a measure of
scale generated by “quantum effects”



THE BV-BRST FORMALISM 1/2

®m Quantization of non-abelian gauge theories is hard;
formulated redundantly in exchange for other properties

Z = / [DAD) Dy S1A9Y] —; / (D] eS12] (5)

> Introduce gauge fixing procedure and FP ghosts b and ¢
Z = /[D(I)DBAdbAdCa]eS[(I)]WLiBAFA[‘I)]bAc"(SaFA[(I)} 6)

m Gauge fixed action has nilpotent odd global symmetry
involving fields and ghosts, called BRST symmetry.

OBRST® = —iec®0, P, 0BrsTBA =0,

1
OBRsTC” = iﬁfﬁﬁycﬁcw, OBRrsTbA = €By. (7)

» Physical theory can be identified with QprsT-cohomology




THE BV-BRST FORMALISM 2/2

m Consider T < (T, Qgrsr) described in a BV-BRST formalism.

> T is a bigger ambient theory with ghosts, anti-ghosts,
anti-fields, etc. and odd nilpotent symmetry

> Observables in T are recovered from T by taking Qgrsr coho

Opsy = (Ops7, @BRsT) ()
Intr = (Opsfi,[dm],d—l-QBRST)

m BV-BRST formalism is natural and necessary

> Essential to quantizing p-form gauge theories, theories which
only close on-shell, field-dependent structure constants...

> Not restricted to such complicated theories either (e.g. scalar)

> QFT in 0O-dimensions is like studying integration on M; the BV
formalism is like studying all of Q° ().

» Building EFTs and accounting for EOM? BV is Dyson-Schwinger

6]



m Can compute analogue of 3 for any type of transformation.
Ex. Non-relativistic scale transformations (¢, z) — (A\*t, Az)

Ex. Anomalous axial transformation on # angle in gauge theory

m Consider 7' — (T, @prst) described in a BV-BRST formalism

> Consider deformations of 7' with Grassmann odd couplings,
non-trivial ghost number, etc. This is a formal pointed
dg-supermanifold D[ T].

> To deform T, we deform T without breaking BRST symmetry.
m BRST symmetry will be encoded in a vector field
i 0
n= ZZ: OF >

(9)

> Linear term tells us if Z explicitly/classically violates BRST
symmetry. Higher order terms do so “quantum mechanically”



m Since Q3rqr = 0, the eta function satisfies n* = 0.
» Wess-Zumino consistency condition for BRST symmetry

> Gives quadratic constraints on coefficient functions n‘(g)
AOED D I N (10)
n>0 " fi+-jn

m Define the following multilinear operation Int®" — Int

{Ijl7 ttt 7Ijn} - 77;1]”-’[1 (11)
» The BRST variation is a Maurer-Cartan equation
1 1
nI:{I}+§{I,I}+§{I,I,I}+... (12)

Coefficients »} ; and brackets {-,...,-}

2
=0
L define an L. -algebra structure on Int.

8]



11-FUNCTION CALCULATIONS AND DATA




11-FUNCTION CALCULATION - GENERAL 1/2

m 77 is not just abstract fun, it is computable fun

m Correlation functions of 7'+ Z are correlation functions of T
with exponential insertion:

(O1(21) - - - On(zn)) poyr = <01($1) : "On(xn)egfddx Z> (13)

T
> At linear order, the BRST anomaly generated by Z; is just
JCES (10)
Rd
> Write '
[Q,Z] =) nZ;+dJ; (15)
j

m In perturbation theory, higher order terms
0(g"™) N/Rdnl(yl)---f(yn) (16)

> Need regularization to avoid UV divergences from colliding Z

9]




11-FUNCTION CALCULATION - GENERAL 2/2

Ex. At O(¢?) we can regularize the deformation to
[ 1 61, 2) T E ) (17
RQd

> We can compute:

CY IFAICRNEEAEES)

(18)
— —/Rmdﬁ@)(a:l,a:z)(I(xl)j(xz) + J(21)Z(m))

m With a sharp cutoff (point-splitting) this becomes
Sharp
{Z, T} (ay) " /| Z@)I(@)+ T 9
T12|=€

» Quantum BRST anomaly appears from total derivative giving
a boundary contribution in point-splitting regularization.



17-FUNCTION CALCULATION - CONCRETE 1/2

B 2d Syiatter With G global symmetry and G gauge theory

1
ST = _Z / de F,LWFIW + SMatter (20)

Ex. Free fermions with vector current J# = ¢y"t,1).
> Study the interaction Z = A4, J*

m Add ghosts and auxiliary fields 7' < (T, Qzrsr)
» BRST transformation of Z gives:
SprsT(ALJ") = (€Dyc) J* + Ay (iege”) = edyed” (21)

> See T is BRST-closed up to total derivative 7 = ¢.J, which can
potentially cause BRST anomaly




BASIC ETA-FUNCTION CALCULATION - CONCRETE 2/2

m The two-bracket receives a contribution from the 2d JJ OPE:

{Z,Z}(2) = / AJ:(21) :ed:(22) + e (1) AT (22)

|z12]=¢€
= £~1 (:A(z1)e(x2): + ie(x)A(ae):) (J(21) I (22))
=# :cdA: (z). (22)

> We use JJ ~ |a:12|’2, Taylor expanded, and integrated by parts
> 4 denotes combinatorial and rep-theoretic factors

m Recover well-known 1-loop anomaly for G-gauge theory
{A;Lj'uaAVJV} = #cFa. (23)

» In 2k-dim, you recover anomaly from (% + 1)-ary bracket



PERTURBATIVE CORRECTIONS TO Q

m Callan-Symanzik equation says renormalized correlators are
independent of (arbitrary) renormalization scale p:

pLam = (12 4 giy) e =0 (24)
du ou

m Analogue of v is Q on local operators
> Coefficients Q(g) of Q define operations Int®*” ® Op — Op

1
QO:{O}+{I,O}+§{I,I,O}+---. (25)
m Compute “semi-chiral ring” in interacting SQFTs

|
@srst acts on fields and generates a vector field n on the space
of theories/perturbative interactions. @ describes the quantum
loop corrected action of BRST symmetry on local operators.



MIDPOINT RECAP AND GENERALIZATIONS

m Recap so far:
» Deformations are integral to our understanding of QFT

> BV-BRST formalism introduces n-function, geometrizes QFT
deformation theory by tracking BRST anomalies

» 7 defines an L..-algebra on interactions and Maurer-Cartan
equation is solved by well-defined deformations

» 7 contains useful information like anomalies and OPEs
» Can compute deformed/interacting Q on local operators
m Generalizations:

» Can consider position dependent interactions: causes
momentum-inflow p? at each vertex. L..-brackets extend to

®iIntp<i) — Intz,:;v“) (26)

> Auxiliary and defect systems: the brackets of 7' x Tprobe
extract more information about T
Ex. All OPE coefficients of chiral VOA from auxiliary brackets




TwiSTED SQFTS




WHY SUPERSYMMETRY?

m SUSY QFTs provide a rich, but tractable, collection of
theories in which quantities are exactly computable or
highly constrained; including phases of gauge theories

» Non-renormalization theorems and dualities

m Insights from SUSY QFTs can tell us about the real world

Ex. Super QCD. N =1 SU(N.) SYM with N; fundamentals exhibits
theories with confinement, chiral symmetry breaking,
strongly coupled IR CFTs etc.

m Tractability follows from existence of protected quantities
» Can be invariant under deformation of coupling constant

> Computable in different duality frames; probe NP physics
Ex. Superconformal index counts local operators with signs

T = Tr(,l)ij1+j2*T/2qjlszfr/Qefﬁ{Q—aSJr} (27)



SUSY AND THE SEMI-CHIRAL RING

m Supersymmetry enhances Poincaré symmetry

{Qa: Qﬁ} = Pa/;? (28)
{Qa:Q,B}:{QOQOﬁ}:O (29)

» Work with 4d A = 1 (in Euclidean signature) for simplicity

m Pick some supercharge Q = Q_
» The semi-chiral ring of () consists of all Q-invariant operators

[Q,0] =0 (30)
» In SUSY vacuum correlators of Q-invariant operators satisfy
(OHQAD ) = (0 ) + (@A) =(©-) ()

> So don't care about operators modulo O ~ O +[Q, A].



FROM SUSY TO THE HOLOMORPHIC TWIST

m Given any SQFT, we define the Holomorphic Twist by taking
cohomology of any one nilpotent supercharge, e.g. Q := Q_

Q2 = 07 Q-Closed: [Q7 O] = 07 Q_ExaCt: [Q7 A] ) (32)

> Most available & least forgetful twist: only needs N/ = 1 SUSY.

» Cohomology isolates the semi-chiral ring

» Cohomology classes computed by the holomorphic twist are
the objects counted by the superconformal index.

m Anti-holomorphic translations are Q-exact, so twisted theory
is (cohomologically) holomorphic [johansen], [Nekrasov], [Costello]

{Q, Qa} = 05 (33)

> Spin(4) ~ SU(2)
> We added Q_ to Qggrst and trivialized anti-holo. translations




SUPERFIELDS AND DOLBEAULT COHOMOLOGY

m 4d N = 1 SQFTs are formulated in language of superspace.

m We use a chiral superspace, with only #% coordinates
» Asuperfield is of the form

0[f) = 7R 00 — 90 L n(1) L (2 (34)
> The right-handed supercharges act by Q4 = 95
m Identify 09 <+ dz%, superfields are Dolbeault (0, o)-forms

m Subsector of original QFT encoding 1/4 N'-BPS operators and
their SUSY multiplets in holomorphic fields on spacetime
> Twisted stress tensor S is a chiral piece of S-multiplet

> (Derivative of) S; generates remaining SU(2) symmetries
» Partition function is superconformal index



A 2D CFT REMINDER

m 2d CFTs have infinite dimensional symmetry enhancements
> Every holomorphic local operator is automatically
d-conserved and remains so when multipled by some f(z).

> Gives humongous families of symmetries, e.g. Virasoro
m A 2d chiral conformal primary ¢ has a mode expansion:

P(2) = Z Z_n_h(in =" ( <o 4 z_1¢31 + z%o + zlé_l + .. )

neZ
> To extract the mode ¢,,, complex analysis says that:
2 ﬁ n+h—1
P = f 577 #(z) (35)
> View this as wedging the (0,0)-form z"¢(z) with a form:
dz n—1 h
o(z) — %z A 2"¢(z) (36)
m 2d chiral primaries have a Z of modes “because”
HM(C\{0}) = Z (37)



MODES IN THE HOLOMORPHIC TWIST

m On C?, chiral superfields O are (0, ¢)-forms
m Forany p € H>*(C%\{0}) we define

O,=¢ ONp (38)
393
» Deg 0 p ~ 22" d*~ gives non-negative modes of operator
> Deg1p ~ 0% 9%wpy gives negative modes of operator

m Infinite dimensional symmetry enhancements analogous to
Virasoro and Kac-Moody [Gwilliam, Williams].
» Deformation ~» [Beem, Lemos, Liendo, Peelaers, Raselli, van Rees]

> [Bomans, Wu] central extensions of higher Virasoro exist, and
are labelled by conformal anomalies (a and c¢), obtainable
from (higher!) brackets of holomorphic stress-tensor

m Stress: OPE of a subsector of the original physical theory,
not a deformed/modified theory.




COHOMOLOGY AND CONFINEMENT




FREE COHOMOLOGY AND ADDING INTERACTIONS

m Start with the Free Cohomology V), i.e. free semi-chiral ring
» G-inv. polynomials (words) in fields and derivatives (letters)

m One way to think of twisted theory is that we have added
Qsusy to QprsT and trivialized some translations

> Interacting quantum @ is obtained by computing brackets:
1 1

> We thus compute all perturbative corrections to the
semi-chiral ring by computing the (higher) brackets
> Brackets are a generalized Konishi-Anomaly for Q.

m Use to systematically construct cohomology of %-BPS
operators in A/ = 4 SYM [chang, Lin], [Choi, Kim, Lee, Lee, Park]

m Cohomology is not fully-protected like index, but can still
compute corrections systematically; categorifies the index




FEYNMAN DIAGRAMS

m Feynman diagrams are Laman graphs. [Budzik, Gaiotto, JK, Wu, Yu]

A\ <> B> AN X

» Arbitrary holomorphic-topological twists in arbitrary
dimensions are captured by generalized-Laman graphs
[Kontsevich], [Gaiotto, Moore, Witten]

m Arbitrary integral takes the form:

Ir[\; 2] = /]RMFo\% 0 H P(Tey — Tey + Zey Tey — Tey ):| |:H e d%U] (40)

ecl’ vely
» Change of variables maps integral to Fourier transform of a
polytope in loop momenta, the operatope.

> Feynman integrals satisfy infinite collection of geometric
quadratic identities; enforcing associativity

» Can bootstrap all Feynman integrals from these identities.




TwisTING \/ = 1 SYM

m N =1SYMis SU(N) gauge theory with an adjoint fermion
L= T/ d*0 tr W, W + c.c. (41)

m Twist is identified (in a non-trivial way) with a holomorphic
be system [Costello], [Elliot, Safronov, Williams], [Saberi, Williams]

> Fields are collected in adjoint bosonic superfield » and
(co)adjoint fermionic superfield c.

m The Lagrangian of this theory is
= 1
Liwisted = 1T b <60 - 5[6, c]) + 7Tr0ncd%c. (42)

» Free cohomology
C[b, Db, BaBsb, . . ., Buc, Dudpec, . .. |¢ (43)
» Derivative of the stress tensor is 8, 5% = 9, b 0% c™.




HOLOMORPHIC CONFINEMENT

m Adding one loop corrections, we find 0,5 = Q Tr b?
> 9,5 generates all remaining spacetime symmetries.

» Exactness of 9,5 means local operators are invariant under
remaining spacetime transformations.

> Theory becomes topological at one loop!

bc System
SYM Topological

m Being topological is compatible with . —p- O

confinement: if topological in the UV,

then topological in the IR.
» Constrains IR physics: the
holomorphic twist of the IR must
also be topological.
» Holomorphic Confi — <>
phic Confinement

Confining Topological




FINAL RECAP




Three Takeaways

1. QFTs have higher brackets, defined by the n-function, which
contain OPEs/anomalies/etc.

» 7 defines L., algebra on space of interactions
» 7 brackets characterize violation of BRST symmetry
2. m-vector is very computable, especially in HT scenarios.
» All graphs are Laman graphs
> Graphs satisfy “operatope” identities, which enforce
associativity (or Q3rsr = 0) diagram-by-diagram.
3. Holomorphic twist is local QFT of ﬁ-BPS operators

» Twisted theory has infinite dimensional symmetry
enhancements

> Systematic computation of semi-chiral ring + corrections
» Holomorphic confinement of V' = 1 SYM






SELECTED HISTORICAL SUSY REFERENCES

m SUSY Non-Renormalization Theorems

» [Sohnius, West], [Mandelstam], [Grisaru, Rocek, Siegel], [Seiberg], [Argyres,
Plesser, Seiberg]

m Phases of gauge theories and SUSY breaking
» Seiberg, Intrilligator, Strassler, Dine, Yu

m Supersymmetric dualities
» [Montonen, Olive], Seiberg, Intrilligator, Witten, Argyres

m Superconformal index

» [witten], [Alvarez-Gaume], [Kinney, Maldacena, Minwalla, Suvrat],
[Romelsberger], [Dolan, Osborn]

m Twisted SQFTs

» Witten, Johansen, Donaldson



HOLOMORPHIC-TOPOLOGICAL
THEORIES




HOLOMORPHIC-TOPOLOGICAL THEORIES

m “Holomorphic-Topological” means flat spacetime has
structure of C¥ x R” with coordinates (z*, z©, %)

» Anti-holomorphic translations in C and translations in R”
are gauge symmetries (Qgrsr-exact)

> Just like superspace lets us build intrinsically supersymmetry
invariant actions, we can build BV actions with “superfields” ®
where dz® and dz° are treated as “superspace coordinates.”

m Interested in theories with action
/ [(®,d ®) 4 Z(®)] da® (44)
CH xRT

> In free theory, BRST closed superfields satisfy descent:
QO+d0=0 (45)
> Interaction Z(®) is BRST-closed up to total derivative.

m Appears in holomorphic-topological twists of SUSY theories.



HOLOMORPHIC-TOPOLOGICAL INTEGRALS

m In such theories, we will be interested in brackets of the form

{01 N1 000 Ao On} (46)

» Conjecturally all information of perturbative HT factorization
algebras. See [wang, williams] for rigourous discussion.

m The Feynman integrals that contribute will take the form:

H Ps('re(O) — Te(1) + Ze)
ecl’y

V£ Vs
F(\z) = dVol,e* @ | d
(A 2) /ero‘_1 [H 3 ]

velg

> Schwinger parameterization recasts integral as Fourier xform
of polytope in space of loop momenta, the operatope.

> Operatope makes UV and IR finiteness of Feynman integrals
manifest.



n-LAMAN CONSTRAINTS

m Non-vanishing Feynman diagrams are n-Laman graphs
> Global Constraint

nlo| = (n—1)[1|+n+1 (47)
> Local Constraint For subgraphs I'[S]
n|L[Slo| = (n — 1)|T[S]1| + n+1 (48)

» n = H + T [Kontsevich], [Gaiotto, Moore, Witten], [Wang]

A\ <> K> AN X



QUADRATIC IDENTITIES

m Ir(\; 2) has a number of symmetries/identities: symmetries
from the graph, and symmetries under shifts of z..

m Feynman integrals (generally diagrams) satisfy infinite
collections of (geometric) quadratic identities:

> o0 ks (A+052) - Ins) (N 2) =0 (49)

Laman S

> Identities imply (higher)-associativity of the accompanying
brackets in a diagram-by-diagram way

» Can bootstrap all Feynman integrals from these identities?

Non-Renormalization Theorem
All loop graphs in (H, T > 2)-theories must vanish.



A NON-RENORMALIZATION THEOREM




A NON-RENORMALIZATION THEOREM 1/2

m Many interesting scenarios with mixed H7T degree.
Ex. (1+1)d holomorphic boundary of a (2+1)d TFT

Useful to “forget” some of the structure of the bulk TFT.

m Trade T = 2 top. directions for an # = 1 holo. direction

> Topological superfield @ splits into two fields in the
holomorphic theory, a (0, *)-form and a (1, *)-part:

d =00 1 oW, (50)
> Topological superfield condition also splits
(Q + diop)® = (Q + diolo)® + 9P = 0. (51)

m O® term is now interpreted as a BRST anomaly due to the
holomorphic part of the kinetic term
> i.e. all top. theory calculations are replaced by calculations in
identical holo. theory with extra (®,9®) interaction



A NON-RENORMALIZATION THEOREM 2/2

m Consider a calculationin (H, T > 2)
» Convert to an equivalent calculation in (H + 1, T — 2)-theory

(H, T > 2)-theory (H+1, T — 2)-theory
v (52)
I {’717 Y25 }

» ~,; will correspond I" with edges ¢; € I'; broken into chains of
edges {f;1,...,fi,m} in all possible ways

» Each vertex has “two-point interaction” (®,0®)
» Each v; has |[I'y| + k edges and |T'y| + k vertices for some & > 0.

m If v; are non-vanishing, they must be (n — 1)-Laman graphs.

> Putting the two conditions together, I' must be a tree for
non-vanishing contribution



INFINITE DIMENSIONAL SYMMETRY
COHOMOLOGY




A 2D CFT REMINDER

m If ¢ is a 2d chiral conformal primary with chiral dimension &,
then we can expand

qb(Z):Zz_”_hg?)n:z_h("'+Z_19131+zoq§o+z1¢3_1—|—...>

neZ
m If we want to extract the mode an, we know that
2 _ dZ TL+h 1
b= § ™02 (59

» Formally, extract n > 0 modes by multiplying by generator 2"
for the space of holomorphic functions on C

> Extract n < 0 modes by integrating against Bochner-Martinelli
kernel

b= 0 0) x § Owmnro(z (56)
where wpy = 1/2
m These are elements of H1%(C'\{0}). Note: H1(C\{0}) =0



DOLBEAULT COHOMOLOGY OF H™*(C" \{0})

m In other words

. "d
¢n=/[zh¢<z>dz]Ap, p~{z ¢
g1

. €HY(C\{0}). (55)
0"wpM

m H%*(C%\{0}) is concentrated in degrees 0 and 1
> Degree 0. Classes are (2,0)-Dolbeault forms with n, m > 0:

pr~ Ztard?z (56)
» Degree 1. Classes are (2,1)-Dolbeault forms with n, m > 0:
p ~ 010 zwBMm (57)

» The Bochner-Martinelli Kernel is now the thing such that
| wmut(z) = £0) (58)
S3

for any holomorphic f(z) on C2.



MODES IN THE HOLOMORPHIC TWIST

m In C?, we've seen that (chiral) superfields O are identifiable
with (0, e)-forms

m Forany p € H>*(C%\{0}) we define

0, = ONp (59)
SS

> Degree O classes p ~ 21" 23" d?z give analogue of non-negative
modes of VOA, O, ,, = O,

> Degree 1classes p ~ 0" 9" wpn give analogue of negative
modes of VOAO_,,_y 1= 0,

m In general H™*(C™\{0}) is ocncentrated in degree 0
(functions) and degree n — 1 (dual functions)
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