Twisted Tools for (Untwisted) Quantum Field Theory

UNIVERSITY OF TORONTO - HEP SEMINAR

JUSTIN KULP WITH DAVIDE GAIOTTO, AND JINGXIANG WU and earlier works with Kasia Budzik, Brian Williams, and Matthew Yu.

SIMONS CENTER FOR GEOMETRY AND PHYSICS

23/SEPT/2024

ARXIV:2403.13049, ARXIV:2306.01039, ARXIV:2207.14321

OUTLINES AND PUNCHLINES 1/2

- Discuss ideas from formal deformation theory in QFT
 - Familiar example is Ocneanu rigidity of fusion categories
 - Ocneanu rigidity is 't Hooft anomaly matching in QFT
- QFTs have "higher" multilinear *k*-ary operations ("brackets")

$$\{-, -, \dots, -\}$$
 (1)

- Control: deformations, (generalized) OPEs, and anomalies
- Satisfy associativity relations, generalizing Jacobi identity
- Familiar to high energy physicists who have studied twisted SQFTs (descent relations)
 - Not limited to twisted scenarios
 - Can go very far in the case of HT theories
- Systematically compute the "semi-chiral" or ¹/_{4N}-BPS operators in supersymmetric QFTs

- I. Introduce the $\eta\text{-}\mathrm{function}$ and higher brackets
- II. Compute the η -function and generalizations
- III. Twisted SQFTs
- IV. Cohomology and Confinement

Three Takeaways

- 1. QFTs have higher brackets, defined by the η -function, which contain OPEs/anomalies/etc.
- 2. η -vector is very computable, especially in HT scenarios.
- 3. Systematic computation of semi-chiral ring + corrections

THE η -Function

DEFORMATIONS OF QFTS

 Given a QFT T, it can be deformed by turning on interactions

$$S_T + \sum_i g^i \int_{\mathbb{R}^d} \mathcal{I}_i(x) d^d x$$

- g^i are "coordinates" on "theory space"
- Work perturbatively in couplings g^i
- Defines a formal pointed neighbourhood D[T] of T, of all effective QFTs obtained by perturbative deformation of T
 - Neighbourhood includes tangent space and all "higher tangent spaces" to the space of theories.
 - Tangent space to space of theories are interactions
 - Infinitesimally captures curvature of space of theories.

THE BETA FUNCTION

- Generic QFT (point) is not scale invariant
 - Scale transformation on T is traded for a change of the couplings e.g. integrating out DoF modifies couplings
- We encode infinitesimal scale transformations in a vector field on theory space, the beta function

$$\boldsymbol{\beta} = \sum_i \beta^i(g) \frac{\partial}{\partial g^i}$$

- ▶ Perturb around (typically free) scale-invariant theory, $\beta = 0$
- ▶ Deformations of T preserving scale invariance are zeroes of β
- The coefficients $\beta^i(g)$ are power series in g

$$\beta^{i}(g) = \underbrace{(d - \Delta_{i})}_{\text{Classical}} g^{i} + \underbrace{O(g^{2})}_{\text{Quantum}}$$
(4)

Usually tune relevant terms to 0 and study β as a measure of scale generated by "quantum effects"

THE BV-BRST FORMALISM 1/2

 Quantization of non-abelian gauge theories is hard; formulated redundantly in exchange for other properties

$$Z = \int [DAD\bar{\psi}D\psi]e^{-S[A,\bar{\psi},\psi]} =: \int [D\Phi]e^{-S[\Phi]}$$
(5)

- Introduce gauge fixing procedure and FP ghosts b and c $Z = \int [D\Phi DB_A db_A dc^{\alpha}] e^{-S[\Phi] + iB_A F^A[\Phi] - b_A c^{\alpha} \delta_{\alpha} F^A[\Phi]}$ (6)
- Gauge fixed action has nilpotent odd global symmetry involving fields and ghosts, called BRST symmetry.

$$\delta_{\text{BRST}} \Phi = -i\epsilon c^{\alpha} \delta_{\alpha} \Phi , \qquad \delta_{\text{BRST}} B_A = 0 ,$$

$$\delta_{\text{BRST}} c^{\alpha} = \frac{i}{2} \epsilon f^{\alpha}_{\beta\gamma} c^{\beta} c^{\gamma} , \qquad \delta_{\text{BRST}} b_A = \epsilon B_A .$$
(7)

Physical theory can be identified with Q_{BRST}-cohomology

THE BV-BRST FORMALISM 2/2

- Consider $T \hookrightarrow (\widetilde{T}, Q_{BRST})$ described in a BV-BRST formalism.
 - T
 is a bigger ambient theory with ghosts, anti-ghosts, anti-fields, etc. and odd nilpotent symmetry
 - ▶ Observables in T are recovered from \widetilde{T} by taking Q_{BRST} coho

$$Ops_T = (Ops_{\widetilde{T}}, Q_{BRST})$$

Int_T = (Ops_{\tilde{T}}[dx], d + Q_{BRST}) (8)

- BV-BRST formalism is natural and necessary
 - Essential to quantizing *p*-form gauge theories, theories which only close on-shell, field-dependent structure constants...
 - Not restricted to such complicated theories either (e.g. scalar)
 - QFT in 0-dimensions is like studying integration on M; the BV formalism is like studying all of $\Omega^{\bullet}(M)$.
 - Building EFTs and accounting for EoM? BV is Dyson-Schwinger

THE ETA FUNCTION

• Can compute analogue of β for any type of transformation. Ex. Non-relativistic scale transformations $(t, x) \mapsto (\lambda^z t, \lambda x)$

Ex. Anomalous axial transformation on $\boldsymbol{\theta}$ angle in gauge theory

• Consider $T \hookrightarrow (\widetilde{T}, Q_{BRST})$ described in a BV-BRST formalism

- Consider deformations of \tilde{T} with Grassmann odd couplings, non-trivial ghost number, etc. This is a formal pointed dg-supermanifold $\mathcal{D}[\tilde{T}]$.
- To deform T, we deform \widetilde{T} without breaking BRST symmetry.
- BRST symmetry will be encoded in a vector field

$$\eta = \sum_{i} \eta^{i}(g) \frac{\partial}{\partial g^{i}}$$
 (9)

Linear term tells us if I explicitly/classically violates BRST symmetry. Higher order terms do so "quantum mechanically"

HIGHER ALGEBRA

Since $Q_{\text{BRST}}^2 = 0$, the eta function satisfies $\eta^2 = 0$.

- Wess-Zumino consistency condition for BRST symmetry
- Gives quadratic constraints on coefficient functions $\eta^i(g)$

$$\eta^{i}(g) = \sum_{n>0} \frac{1}{n!} \sum_{j_{1}\cdots j_{n}} \eta^{i}_{j_{1}\cdots j_{n}} g^{j_{1}} \cdots g^{j_{n}}$$
(10)

• Define the following multilinear operation $\mathrm{Int}^{\otimes n} o \mathrm{Int}$

$$\{\mathcal{I}_{j_1},\ldots,\mathcal{I}_{j_n}\}=\eta^i_{j_1\cdots j_n}\mathcal{I}_i$$
 (11)

The BRST variation is a Maurer-Cartan equation

$$\eta \mathcal{I} = \{\mathcal{I}\} + \frac{1}{2!}\{\mathcal{I}, \mathcal{I}\} + \frac{1}{3!}\{\mathcal{I}, \mathcal{I}, \mathcal{I}\} + \dots$$
 (12)

$$\eta^2 = 0 \quad \Leftrightarrow$$

Coefficients $\eta_{j_1\cdots j_n}^i$ and brackets $\{\cdot, \ldots, \cdot\}$ define an L_{∞} -algebra structure on Int.

$\eta\text{-}\mathsf{Function}$ Calculations and Data

η -Function Calculation - General 1/2

- lacksquare η is not just abstract fun, it is computable fun
- Correlation functions of $T + \mathcal{I}$ are correlation functions of T with exponential insertion:

$$\langle \mathcal{O}_1(x_1)\cdots\mathcal{O}_n(x_n)\rangle_{T+\mathcal{I}} = \left\langle \mathcal{O}_1(x_1)\cdots\mathcal{O}_n(x_n)e^{g\int d^d x \,\mathcal{I}} \right\rangle_T$$
 (13)

• At linear order, the BRST anomaly generated by \mathcal{I}_i is just

$$\int_{\mathbb{R}^d} [Q, \mathcal{I}_i] \tag{14}$$

Write

$$[Q, \mathcal{I}_i] = \sum_j \eta_i^j \mathcal{I}_j + d\mathcal{J}_i$$
(15)

In perturbation theory, higher order terms

$$O(g^n) \sim \int_{\mathbb{R}^{dn}} \mathcal{I}(y_1) \cdots \mathcal{I}(y_n)$$
 (16)

Need regularization to avoid UV divergences from colliding I

η -Function Calculation - General 2/2

Ex. At $O(g^2)$ we can regularize the deformation to

$$\int_{\mathbb{R}^{2d}} f_{\epsilon}^{(2)}(x_1, x_2) \mathcal{I}(x_1) \mathcal{I}(x_2)$$
(17)

We can compute:

$$\begin{bmatrix} Q, \int_{\mathbb{R}^{2d}} f_{\epsilon}^{(2)}(x_1, x_2) \ \mathcal{I}(x_1) \ \mathcal{I}(x_2) \end{bmatrix} = -\int_{\mathbb{R}^{2d}} df_{\epsilon}^{(2)}(x_1, x_2) (\mathcal{I}(x_1) \ \mathcal{J}(x_2) + \mathcal{J}(x_1) \ \mathcal{I}(x_2))$$
(18)

With a sharp cutoff (point-splitting) this becomes

$$\{\mathcal{I},\mathcal{I}\}(x_2) \stackrel{\text{Sharp}}{=} \int_{|x_{12}|=\epsilon} \mathcal{I}(x_1)\mathcal{J}(x_2) + \mathcal{J}(x_1)\mathcal{I}(x_2)$$
(19)

 Quantum BRST anomaly appears from total derivative giving a boundary contribution in point-splitting regularization.

η -Function Calculation - Concrete 1/2

2 2d S_{Matter} with G global symmetry and G gauge theory

$$S_T = -\frac{1}{4} \int d^2 x F_{\mu\nu} F^{\mu\nu} + S_{\text{Matter}}$$
 (20)

Ex. Free fermions with vector current $J_a^{\mu} = \bar{\psi} \gamma^{\mu} t_a \psi$.

- Study the **interaction** $\mathcal{I} = A_{\mu}J^{\mu}$
- Add ghosts and auxiliary fields $T \hookrightarrow (\widetilde{T}, Q_{BRST})$
 - BRST transformation of *I* gives:

 $\delta_{\text{BRST}}(A_{\mu}J^{\mu}) = (\epsilon D_{\mu}c)J^{\mu} + A_{\mu}(i\epsilon gcJ^{\mu}) = \epsilon \partial_{\mu}cJ^{\mu}$ (21)

See \mathcal{I} is BRST-closed up to total derivative $\mathcal{J} = cJ$, which can potentially cause BRST anomaly

BASIC ETA-FUNCTION CALCULATION - CONCRETE 2/2

■ The two-bracket receives a contribution from the 2d JJ OPE:

$$\{\mathcal{I}, \mathcal{I}\}(x_2) = \int_{|x_{12}|=\epsilon} :AJ:(x_1) :cJ:(x_2) + :cJ:(x_1) :AJ:(x_2)$$

= $\oint_{S_{x_2}^1} (:A(x_1)c(x_2): + :c(x_1)A(x_2):) \langle J(x_1)J(x_2) \rangle$
= $\# :c \, dA: (x_2).$ (22)

• We use $JJ \sim |x_{12}|^{-2}$, Taylor expanded, and integrated by parts

denotes combinatorial and rep-theoretic factors

Recover well-known 1-loop anomaly for G-gauge theory

$$\{A_{\mu}J^{\mu}, A_{\nu}J^{\nu}\} = \# cF_{12}.$$
 (23)

• In 2k-dim, you recover anomaly from (k + 1)-ary bracket

Perturbative Corrections to ${\bf Q}$

Callan-Symanzik equation says renormalized correlators are independent of (arbitrary) renormalization scale μ:

$$\mu \frac{d}{d\mu} G^{(n)} = \left(\mu \frac{\partial}{\partial \mu} + \beta + \gamma\right) G^{(n)} = 0$$
 (24)

Analogue of γ is Q on local operators

► Coefficients $Q^i(g)$ of Q define operations $\operatorname{Int}^{\otimes n} \otimes \operatorname{Op} \to \operatorname{Op}$ $Q \mathcal{O} = \{\mathcal{O}\} + \{\mathcal{I}, \mathcal{O}\} + \frac{1}{2}\{\mathcal{I}, \mathcal{I}, \mathcal{O}\} + \cdots$ (25)

Compute "semi-chiral ring" in interacting SQFTs

 $Q_{\rm BRST}$ acts on fields and generates a vector field η on the space of theories/perturbative interactions. Q describes the **quantum loop corrected action** of BRST symmetry on **local operators**.

MIDPOINT RECAP AND GENERALIZATIONS

Recap so far:

- Deformations are integral to our understanding of QFT
- BV-BRST formalism introduces η-function, geometrizes QFT deformation theory by tracking BRST anomalies
- η defines an L_∞-algebra on interactions and Maurer-Cartan equation is solved by well-defined deformations
- \blacktriangleright η contains useful information like anomalies and OPEs
- ► Can compute deformed/interacting **Q** on local operators
- Generalizations:
 - Can consider position dependent interactions: causes momentum-inflow pⁱ at each vertex. L_∞-brackets extend to

$$\otimes_i \operatorname{Int}_{p^{(i)}} \to \operatorname{Int}_{\sum_i p^{(i)}}$$
 (26)

 Auxiliary and defect systems: the brackets of T × T_{probe} extract more information about T
 Ex. All OPE coefficients of chiral VOA from auxiliary brackets

TWISTED SQFTS

- SUSY QFTs provide a rich, but tractable, collection of theories in which quantities are exactly computable or highly constrained; including phases of gauge theories
 - Non-renormalization theorems and dualities

Insights from SUSY QFTs can tell us about the real world

Ex. Super QCD. $\mathcal{N} = 1 SU(N_c)$ SYM with N_f fundamentals exhibits theories with confinement, chiral symmetry breaking, strongly coupled IR CFTs etc.

Tractability follows from existence of protected quantities

- Can be invariant under deformation of coupling constant
- Computable in different duality frames; probe NP physics
- Ex. Superconformal index counts local operators with signs

$$\mathcal{I} = \text{Tr}(-1)^F p^{j_1 + j_2 - r/2} q^{j_1 - j_2 - r/2} e^{-\beta \{Q_-, S_+\}}$$
(27)

Supersymmetry enhances Poincaré symmetry

$$\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = P_{\alpha\dot{\beta}},$$

$$\{Q_{\alpha}, Q_{\beta}\} = \{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0.$$
(28)
(29)

Work with 4d
$$\mathcal{N} = 1$$
 (in Euclidean signature) for simplicity

- **Pick some supercharge** $Q = Q_{-}$
 - ► The **semi-chiral ring** of Q consists of all Q-invariant operators [Q, O] = 0 (30)
 - ► In SUSY vacuum correlators of *Q*-invariant operators satisfy

$$\langle (\mathcal{O} + [Q, \Lambda]) \cdots \rangle = \langle \mathcal{O} \cdots \rangle + \langle [Q, \Lambda \cdots] \rangle = \langle \mathcal{O} \cdots \rangle$$
(31)

► So don't care about operators modulo $\mathcal{O} \sim \mathcal{O} + [Q, \Lambda]$.

FROM SUSY TO THE HOLOMORPHIC TWIST

Given any SQFT, we define the Holomorphic Twist by taking cohomology of any one nilpotent supercharge, e.g. Q := Q_-

 $Q^2 = 0$, Q-Closed: $[Q, \mathcal{O}] = 0$, Q-Exact: $[Q, \Lambda]$, (32)

- Most available & least forgetful twist: only needs $\mathcal{N} = 1$ SUSY.
- Cohomology isolates the semi-chiral ring
- Cohomology classes computed by the holomorphic twist are the objects counted by the superconformal index.
- Anti-holomorphic translations are Q-exact, so twisted theory is (cohomologically) holomorphic [Johansen], [Nekrasov], [Costello]

$$\{Q, \bar{Q}_{\dot{\alpha}}\} = \partial_{\bar{z}^{\dot{\alpha}}} \tag{33}$$

- $\blacktriangleright \text{ Spin}(4) \rightsquigarrow SU(2)$
- ▶ We added Q_{-} to Q_{BRST} and trivialized anti-holo. translations

SUPERFIELDS AND DOLBEAULT COHOMOLOGY

- 4d $\mathcal{N} = 1$ SQFTs are formulated in language of superspace.
- We use a **chiral superspace**, with only $\bar{\theta}^{\dot{\alpha}}$ coordinates
 - A superfield is of the form

$$\mathcal{O}[\bar{\theta}] = e^{\bar{\theta}^{\dot{\alpha}} \bar{Q}_{\dot{\alpha}}} \mathcal{O}^{(0)} = \mathcal{O}^{(0)} + \mathcal{O}^{(1)} + \mathcal{O}^{(2)}$$
(34)

• The right-handed supercharges act by $\bar{Q}_{\dot{\alpha}} = \partial_{\bar{\theta}^{\dot{\alpha}}}$

- Identify $\bar{\theta}^{\dot{\alpha}} \leftrightarrow d\bar{z}^{\dot{\alpha}}$, superfields are **Dolbeault** $(0, \bullet)$ -forms
- Subsector of original QFT encoding 1/4 N-BPS operators and their SUSY multiplets in holomorphic fields on spacetime
 - Twisted stress tensor $S_{\dot{\alpha}}$ is a chiral piece of S-multiplet
 - (Derivative of) $S_{\dot{\alpha}}$ generates remaining SU(2) symmetries
 - Partition function is superconformal index

A 2D CFT REMINDER

- 2d CFTs have infinite dimensional symmetry enhancements
 - Every holomorphic local operator is automatically $\bar{\partial}$ -conserved and remains so when multipled by some f(z).
 - Gives humongous families of symmetries, e.g. Virasoro

• A 2d chiral conformal primary ϕ has a mode expansion:

$$\phi(z) = \sum_{n \in \mathbb{Z}} z^{-n-h} \hat{\phi}_n = z^{-h} \left(\dots + z^{-1} \hat{\phi}_1 + z^0 \hat{\phi}_0 + z^1 \hat{\phi}_{-1} + \dots \right)$$

• To extract the mode $\hat{\phi}_n$, complex analysis says that:

$$\hat{\phi}_n = \oint \frac{dz}{2\pi i} z^{n+h-1} \phi(z) \tag{35}$$

 \blacktriangleright View this as wedging the $(0,0)\mbox{-form}\ z^h\phi(z)$ with a form:

$$\phi(z) \mapsto \frac{dz}{2\pi i} z^{n-1} \wedge z^h \phi(z) \tag{36}$$

• 2d chiral primaries have a \mathbb{Z} of modes "because" $H^{1,\bullet}(\mathbb{C}^1 \setminus \{0\}) \cong \mathbb{Z}$

(37)

Modes in the Holomorphic Twist

- On \mathbb{C}^2 , chiral superfields \mathcal{O} are $(0, \bullet)$ -forms
- For any $\rho \in H^{2, \bullet}(\mathbb{C}^2 \setminus \{0\})$ we define

$$\hat{\mathcal{O}}_{\rho} = \oint_{S^3} \mathcal{O} \wedge \rho \tag{38}$$

- ▶ Deg o $\rho \sim z_1^n z_2^m d^2 z$ gives **non-negative modes** of operator
- Deg 1 $\rho \sim \partial_{z^1}^n \partial_{z^2}^m \omega_{\rm BM}$ gives negative modes of operator
- Infinite dimensional symmetry enhancements analogous to Virasoro and Kac-Moody [Gwilliam, Williams].
 - ▶ Deformation ~→ [Beem, Lemos, Liendo, Peelaers, Raselli, van Rees]
 - [Bomans, Wu] central extensions of higher Virasoro exist, and are labelled by conformal anomalies (a and c), obtainable from (higher!) brackets of holomorphic stress-tensor
- Stress: OPE of a subsector of the original physical theory, not a deformed/modified theory.

COHOMOLOGY AND CONFINEMENT

FREE COHOMOLOGY AND ADDING INTERACTIONS

- Start with the **Free Cohomology** \mathcal{V} , i.e. free semi-chiral ring
 - G-inv. polynomials (words) in fields and derivatives (letters)
- One way to think of twisted theory is that we have added Q_{SUSY} to Q_{BRST} and trivialized some translations
 - Interacting quantum Q is obtained by computing brackets:

$$\mathbf{Q}\mathcal{O} = \{\mathcal{I}, \mathcal{O}\} + \frac{1}{2}\{\mathcal{I}, \mathcal{I}, \mathcal{O}\} + \frac{1}{6}\{\mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{O}\} + \dots$$
(39)

- We thus compute all perturbative corrections to the semi-chiral ring by computing the (higher) brackets
- ▶ Brackets are a generalized Konishi-Anomaly for *Q*.
- Use to systematically construct cohomology of $\frac{1}{16}$ -BPS operators in $\mathcal{N} = 4$ SYM [Chang, Lin], [Choi, Kim, Lee, Lee, Park]
- Cohomology is not fully-protected like index, but can still compute corrections systematically; categorifies the index

FEYNMAN DIAGRAMS

Feynman diagrams are Laman graphs. [Budzik, Gaiotto, JK, Wu, Yu]

- Arbitrary holomorphic-topological twists in arbitrary dimensions are captured by generalized-Laman graphs [Kontsevich], [Gaiotto, Moore, Witten]
- Arbitrary integral takes the form:

$$\mathcal{I}_{\Gamma}[\lambda;z] \equiv \int_{\mathbb{R}^{4}|\Gamma_{0}|-4} \bar{\partial} \left[\prod_{e \in \Gamma_{1}} \mathcal{P}(x_{e_{0}} - x_{e_{1}} + z_{e}, \bar{x}_{e_{0}} - \bar{x}_{e_{1}}) \right] \left[\prod_{v \in \Gamma_{0}'} e^{\lambda_{v} \cdot x_{v}} d^{2}x_{v} \right]$$
(40)

- Change of variables maps integral to Fourier transform of a polytope in loop momenta, the **operatope**.
- Feynman integrals satisfy infinite collection of geometric quadratic identities; enforcing associativity
- Can **bootstrap** all Feynman integrals from these identities.

Twisting $\mathcal{N} = 1$ SYM

\mathbb{N} $\mathcal{N} = 1$ **SYM** is SU(N) gauge theory with an adjoint fermion

$$\mathcal{L} = \tau \int d^2\theta \, \operatorname{tr} W_{\alpha} W^{\alpha} + \text{c.c.}$$
(41)

Twist is identified (in a non-trivial way) with a holomorphic bc system [Costello], [Elliot, Safronov, Williams], [Saberi, Williams]

- Fields are collected in adjoint bosonic superfield b and (co)adjoint fermionic superfield c.
- The Lagrangian of this theory is

$$\mathcal{L}_{\text{twisted}} = \operatorname{Tr} b\left(\bar{\partial}c - \frac{1}{2}[c,c]\right) + \tau \operatorname{Tr} \partial_{\alpha}c \,\partial^{\alpha}c \,. \tag{42}$$

Free cohomology

$$\mathbb{C}[b,\partial_{\alpha}b,\partial_{\alpha}\partial_{\beta}b,\ldots,\partial_{\alpha}c,\partial_{\alpha}\partial_{\beta}c,\ldots]^{G}$$
(43)

• Derivative of the stress tensor is $\partial_{\alpha}S^{\alpha} = \partial_{\alpha}b_A\partial^{\alpha}c^A$.

HOLOMORPHIC CONFINEMENT

- Adding one loop corrections, we find $\partial_{\alpha}S^{\alpha} = Q \operatorname{Tr} b^2$
 - ► $\partial_{\alpha}S^{\alpha}$ generates all remaining spacetime symmetries.
 - Exactness of $\partial_{\alpha}S^{\alpha}$ means local operators are invariant under remaining spacetime transformations.
 - Theory becomes topological at one loop!

- Being topological is compatible with confinement: if topological in the UV, then topological in the IR.
 - Constrains IR physics: the holomorphic twist of the IR must also be topological.
 - Holomorphic Confinement

24

FINAL RECAP

Recap

Three Takeaways

- 1. QFTs have higher brackets, defined by the η -function, which contain OPEs/anomalies/etc.
 - ▶ η defines L_∞ algebra on space of interactions
 - η brackets characterize violation of BRST symmetry
- 2. η -vector is very computable, especially in HT scenarios.
 - All graphs are Laman graphs
 - Graphs satisfy "operatope" identities, which enforce associativity (or $Q_{BRST}^2 = 0$) diagram-by-diagram.
- 3. Holomorphic twist is local QFT of $\frac{1}{4N}$ -BPS operators
 - Twisted theory has infinite dimensional symmetry enhancements
 - Systematic computation of semi-chiral ring + corrections
 - Holomorphic confinement of $\mathcal{N} = 1$ SYM

SELECTED HISTORICAL SUSY REFERENCES

SUSY Non-Renormalization Theorems

- [Sohnius, West], [Mandelstam], [Grisaru, Rocek, Siegel], [Seiberg], [Argyres, Plesser, Seiberg]
- Phases of gauge theories and SUSY breaking
 - Seiberg, Intrilligator, Strassler, Dine, Yu
- Supersymmetric dualities
 - [Montonen, Olive], Seiberg, Intrilligator, Witten, Argyres
- Superconformal index
 - [Witten], [Alvarez-Gaume], [Kinney, Maldacena, Minwalla, Suvrat], [Romelsberger], [Dolan, Osborn]
- Twisted SQFTs
 - Witten, Johansen, Donaldson

HOLOMORPHIC-TOPOLOGICAL THEORIES

HOLOMORPHIC-TOPOLOGICAL THEORIES

- "Holomorphic-Topological" means flat spacetime has structure of $\mathbb{C}^H \times \mathbb{R}^T$ with coordinates $(x^{\mathbb{C}}, \bar{x}^{\mathbb{C}}, x^{\mathbb{R}})$
 - Anti-holomorphic translations in \mathbb{C}^H and translations in \mathbb{R}^T are gauge symmetries (Q_{BRST} -exact)
 - ► Just like superspace lets us build intrinsically supersymmetry invariant actions, we can build BV actions with "superfields" Φ where $dx^{\mathbb{R}}$ and $d\bar{x}^{\mathbb{C}}$ are treated as "superspace coordinates."
- Interested in theories with action

$$\int_{\mathbb{C}^{H} \times \mathbb{R}^{T}} \left[(\Phi, \mathrm{d}\,\Phi) + \mathcal{I}(\Phi) \right] \, d^{H} x^{\mathbb{C}} \tag{44}$$

In free theory, BRST closed superfields satisfy descent:

$$Q\mathcal{O} + \mathrm{d}\mathcal{O} = 0 \tag{45}$$

- Interaction $\mathcal{I}(\Phi)$ is BRST-closed up to total derivative.
- Appears in holomorphic-topological twists of SUSY theories.

In such theories, we will be interested in brackets of the form

$$\{\mathcal{O}_{1\,\lambda_1\cdots\lambda_{n-1}}\,\mathcal{O}_n\}\tag{46}$$

- Conjecturally all information of perturbative HT factorization algebras. See [Wang, Williams] for rigourous discussion.
- The Feynman integrals that contribute will take the form:

$$I_{\Gamma}(\lambda; z) = \int_{\mathcal{M}^{|\Gamma_0|-1}} \left[\prod_{v \in \Gamma_0}^{v \neq v_*} \mathrm{dVol}_v e^{\lambda_v \cdot x_v^{\mathbb{C}}} \right] \mathrm{d} \left[\prod_{e \in \Gamma_1} P_e(x_{e(0)} - x_{e(1)} + z_e) \right]$$

- Schwinger parameterization recasts integral as Fourier xform of polytope in space of loop momenta, the operatope.
- Operatope makes UV and IR finiteness of Feynman integrals manifest.

Non-vanishing Feynman diagrams are *n*-Laman graphs Global Constraint

$$n|\Gamma_0| = (n-1)|\Gamma_1| + n + 1$$
(47)

• Local Constraint For subgraphs $\Gamma[S]$

$$n|\Gamma[S]_0| \ge (n-1)|\Gamma[S]_1| + n + 1$$
 (48)

• n = H + T [Kontsevich], [Gaiotto, Moore, Witten], [Wang]

QUADRATIC IDENTITIES

L

- I_{Γ}(λ ; z) has a number of symmetries/identities: symmetries from the graph, and symmetries under shifts of z_e .
- Feynman integrals (generally diagrams) satisfy infinite collections of (geometric) quadratic identities:

$$\sum_{\text{aman }S} \sigma(\Gamma, S) I_{\Gamma[S]} \left(\lambda + \partial; z\right) \cdot I_{\Gamma(S)} \left(\lambda; z\right) = 0.$$
(49)

- Identities imply (higher)-associativity of the accompanying brackets in a diagram-by-diagram way
- Can bootstrap all Feynman integrals from these identities?

Non-Renormalization Theorem

All loop graphs in $(H, T \ge 2)$ -theories must vanish.

A Non-Renormalization Theorem

A Non-Renormalization Theorem 1/2

Many interesting scenarios with mixed HT degree.
 Ex. (1+1)d holomorphic boundary of a (2+1)d TFT
 Useful to "forget" some of the structure of the bulk TFT.

Trade T = 2 top. directions for an H = 1 holo. direction

► Topological superfield Φ splits into two fields in the holomorphic theory, a (0, *)-form and a (1, *)-part:

$$\Phi = \Phi^{(0)} + \Phi^{(1)} dz \,. \tag{50}$$

Topological superfield condition also splits

$$(Q + d_{top})\Phi = (Q + d_{Holo})\Phi + \partial\Phi = 0.$$
 (51)

- \blacksquare $\partial \Phi$ term is now interpreted as a BRST anomaly due to the holomorphic part of the kinetic term
 - ▶ i.e. all top. theory calculations are replaced by calculations in identical holo. theory with extra $(\Phi, \partial \Phi)$ interaction

A Non-Renormalization Theorem 2/2

• Consider a calculation in $(H, T \ge 2)$

• Convert to an equivalent calculation in (H + 1, T - 2)-theory

$$\begin{array}{ccc} (H,\,T\geq 2)\text{-theory} & & (H+1,\,T-2)\text{-theory} \\ \Gamma & & & \{\gamma_1,\gamma_2,\dots\} \end{array} \tag{52}$$

- ► γ_i will correspond Γ with edges $e_i \in \Gamma_1$ broken into chains of edges $\{f_{i,1}, \ldots, f_{i,m}\}$ in all possible ways
- Each vertex has "two-point interaction" $(\Phi, \partial \Phi)$
- Each γ_i has $|\Gamma_1| + k$ edges and $|\Gamma_0| + k$ vertices for some $k \ge 0$.
- If γ_i are non-vanishing, they must be (n-1)-Laman graphs.
 - ► Putting the two conditions together, Γ must be a tree for non-vanishing contribution

INFINITE DIMENSIONAL SYMMETRY COHOMOLOGY

A 2D CFT REMINDER

■ If *φ* is a **2d chiral conformal primary** with chiral dimension *h*, then we can expand

$$\phi(z) = \sum_{n \in \mathbb{Z}} z^{-n-h} \hat{\phi}_n = z^{-h} \left(\dots + z^{-1} \hat{\phi}_1 + z^0 \hat{\phi}_0 + z^1 \hat{\phi}_{-1} + \dots \right)$$

If we want to **extract the mode** $\hat{\phi}_n$, we know that

$$\hat{\phi}_n = \oint \frac{dz}{2\pi i} z^{n+h-1} \phi(z) \tag{53}$$

- Formally, extract n ≥ 0 modes by multiplying by generator zⁿ for the space of holomorphic functions on C
- Extract n < 0 modes by integrating against Bochner-Martinelli kernel</p>

$$\hat{\phi}_n = \frac{1}{n!} \phi^{(n)}(0) \propto \oint \partial^n \omega_{\rm BM} \phi(z)$$
(54)

where $\omega_{\rm BM} = 1/z$

These are elements of $H^{1,0}(\mathbb{C}^1 \setminus \{0\})$. Note: $H^{1,1}(\mathbb{C}^1 \setminus \{0\}) = 0$

In other words

$$\hat{\phi}_n = \int_{S^1} [z^h \phi(z) d\bar{z}] \wedge \rho, \quad \rho \sim \begin{cases} z^n dz \\ \partial^n \omega_{\rm BM} \end{cases} \in H^{1,0}(\mathbb{C} \setminus \{0\}).$$
 (55)

• $H^{2,\bullet}(\mathbb{C}^2 \setminus \{0\})$ is concentrated in degrees 0 and 1

• Degree 0. Classes are (2,0)-Dolbeault forms with $n, m \ge 0$:

$$\rho \sim z_1^n z_2^m d^2 z \tag{56}$$

• Degree 1. Classes are (2,1)-Dolbeault forms with $n, m \ge 0$:

$$\rho \sim \partial_{z^1}^n \partial_{z^2}^m \omega_{\rm BM} \tag{57}$$

The Bochner-Martinelli Kernel is now the thing such that

$$\int_{S^3} \omega_{BM} f(z) = f(0) \tag{58}$$

for any holomorphic f(z) on \mathbb{C}^2 .

Modes in the Holomorphic Twist

- In C², we've seen that (chiral) superfields O are identifiable with (0, ●)-forms
- For any $\rho \in H^{2,\bullet}(\mathbb{C}^2 \setminus \{0\})$ we define

$$\hat{O}_{\rho} = \oint_{S^3} O \wedge \rho \tag{59}$$

- ▶ Degree o classes $\rho \sim z_1^n z_2^m d^2 z$ give analogue of non-negative modes of VOA, $\hat{O}_{n,m} = \hat{O}_{\rho}$
- ► Degree 1 classes $\rho \sim \partial_{z^1}^n \partial_{z^2}^m \omega_{BM}$ give analogue of negative modes of VOA $\hat{O}_{-n-1,-m-1} = \hat{O}_{\rho}$
- In general $H^{n,\bullet}(\mathbb{C}^n \setminus \{0\})$ is ocncentrated in degree 0 (functions) and degree n-1 (dual functions)

SUMMARY OF SYMMETRIES

Supercurrent
$$S_{KyA} T_{AV}$$

I define $S_{K}^{(0)} \equiv S_{+3} + ik$
It turns out $Q(\partial^{2} S_{K}^{(0)}) = 0$
 $\Longrightarrow \partial^{2} S_{K}$ is semi-chine
Actually, when case. R-symt
 $S_{K}^{(1)}$ is semi-chinel
As it turns out, $S_{K}^{(2)}$ contains the
holomorphic part of physical stress
tensor and generates diffs of
spacetime.