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Outlines and Punchlines 1/2
Discuss ideas from formal deformation theory in QFT
! Familiar example is Ocneanu rigidity of fusion categories
! Ocneanu rigidity is ’t Hooft anomaly matching in QFT

QFTs have “higher” multilinear k-ary operations (“brackets”)

{−,−, . . . ,−} (1)

! Control: deformations, (generalized) OPEs, and anomalies
! Satisfy associativity relations, generalizing Jacobi identity

Familiar to high energy physicists who have studied twisted
SQFTs (descent relations)
! Not limited to twisted scenarios
! Can go very far in the case of HT theories

Systematically compute the “semi-chiral” or 1
4N -BPS

operators in supersymmetric QFTs
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Outlines and Punchlines 2/2

I. Introduce the η-function and higher brackets
II. Compute the η-function and generalizations
III. Twisted SQFTs
IV. Cohomology and Confinement

Three Takeaways

1. QFTs have higher brackets, defined by the η-function, which
contain OPEs/anomalies/etc.

2. η-vector is very computable, especially in HT scenarios.
3. Systematic computation of semi-chiral ring + corrections
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The η-Function



Deformations of QFTs

Given a QFT T , it can be deformed by
turning on interactions

ST +
∑

i
gi

∫

Rd
I i(x)ddx (2)

! gi are “coordinates” on “theory space”
! Work perturbatively in couplings gi

Defines a formal pointed neighbourhood D[T ] of T , of all
effective QFTs obtained by perturbative deformation of T
! Neighbourhood includes tangent space and all “higher
tangent spaces” to the space of theories.

! Tangent space to space of theories are interactions
! Infinitesimally captures curvature of space of theories.
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The Beta Function
Generic QFT (point) is not scale invariant
! Scale transformation on T is traded for a change of the
couplings e.g. integrating out DoF modifies couplings

We encode infinitesimal scale transformations in a vector
field on theory space, the beta function

β =
∑

i
βi(g) ∂

∂gi (3)

! Perturb around (typically free) scale-invariant theory, β = 0
! Deformations of T preserving scale invariance are zeroes of β

The coefficients βi(g) are power series in g
βi(g) = (d −∆i)︸ ︷︷ ︸

Classical

gi + O(g2)︸ ︷︷ ︸
Quantum

(4)

! Usually tune relevant terms to 0 and study β as a measure of
scale generated by “quantum effects”
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The BV-BRST Formalism 1/2

Quantization of non-abelian gauge theories is hard;
formulated redundantly in exchange for other properties

Z =

∫
[DADψ̄Dψ]e−S [A,ψ̄,ψ] =:

∫
[DΦ]e−S [Φ] (5)

! Introduce gauge fixing procedure and FP ghosts b and c

Z =

∫
[DΦDBAdbAdcα]e−S [Φ]+iBAFA[Φ]−bAcαδαFA[Φ] (6)

Gauge fixed action has nilpotent odd global symmetry
involving fields and ghosts, called BRST symmetry.

δBRSTΦ = −iϵcαδαΦ , δBRSTBA = 0 ,

δBRSTcα =
i
2ϵf

α
βγcβcγ , δBRSTbA = ϵBA . (7)

! Physical theory can be identified with QBRST-cohomology
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The BV-BRST Formalism 2/2

Consider T ↪→ (T̃ ,QBRST) described in a BV-BRST formalism.
! T̃ is a bigger ambient theory with ghosts, anti-ghosts,
anti-fields, etc. and odd nilpotent symmetry

! Observables in T are recovered from T̃ by taking QBRST coho

OpsT = (OpsT̃ ,QBRST)

IntT = (OpsT̃ [dx], d+QBRST)
(8)

BV-BRST formalism is natural and necessary
! Essential to quantizing p-form gauge theories, theories which
only close on-shell, field-dependent structure constants...

! Not restricted to such complicated theories either (e.g. scalar)
! QFT in 0-dimensions is like studying integration on M ; the BV
formalism is like studying all of Ω•(M ).

! Building EFTs and accounting for EoM? BV is Dyson-Schwinger
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The Eta Function
Can compute analogue of β for any type of transformation.
Ex. Non-relativistic scale transformations (t, x) #→ (λzt,λx)
Ex. Anomalous axial transformation on θ angle in gauge theory

Consider T ↪→ (T̃ ,QBRST) described in a BV-BRST formalism
! Consider deformations of T̃ with Grassmann odd couplings,
non-trivial ghost number, etc. This is a formal pointed
dg-supermanifold D[T̃ ].

! To deform T , we deform T̃ without breaking BRST symmetry.

BRST symmetry will be encoded in a vector field

η =
∑

i
ηi(g) ∂

∂gi (9)

! Linear term tells us if I explicitly/classically violates BRST
symmetry. Higher order terms do so “quantum mechanically”
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Higher Algebra
Since Q2

BRST = 0, the eta function satisfies η2 = 0.
! Wess-Zumino consistency condition for BRST symmetry
! Gives quadratic constraints on coefficient functions ηi(g)

ηi(g) =
∑

n>0

1
n!

∑

j1···jn

ηi
j1···jn gj1 · · · gjn (10)

Define the following multilinear operation Int⊗n → Int
{Ij1 , . . . , Ijn} = ηi

j1···jnIi (11)
! The BRST variation is a Maurer-Cartan equation

η I = {I}+ 1
2!{I, I}+

1
3!{I, I, I}+ . . . (12)

η2 = 0 ⇔ Coefficients ηi
j1···jn and brackets {·, . . . , ·}

define an L∞-algebra structure on Int.
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η-FunctionCalculations andData



η-Function Calculation - General 1/2
η is not just abstract fun, it is computable fun
Correlation functions of T + I are correlation functions of T
with exponential insertion:

⟨O1(x1) · · · On(xn)⟩T+I =
〈
O1(x1) · · · On(xn)eg

∫
ddx I

〉

T
(13)

! At linear order, the BRST anomaly generated by Ii is just∫

Rd
[Q, Ii ] (14)

! Write
[Q, Ii ] =

∑

j
ηj

i Ij +dJi (15)

In perturbation theory, higher order terms

O(gn) ∼
∫

Rdn
I(y1) · · · I(yn) (16)

! Need regularization to avoid UV divergences from colliding I
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η-Function Calculation - General 2/2
Ex. At O(g2) we can regularize the deformation to

∫

R2d
f (2)ϵ (x1, x2)I(x1)I(x2) (17)

! We can compute:
[
Q,

∫

R2d
f (2)ϵ (x1, x2) I(x1) I(x2)

]

= −
∫

R2d
df (2)ϵ (x1, x2)(I(x1)J (x2) + J (x1)I(x2))

(18)

With a sharp cutoff (point-splitting) this becomes

{I, I}(x2)
Sharp
Cutoff=

∫

|x12|=ϵ
I(x1)J (x2) + J (x1)I(x2) (19)

! Quantum BRST anomaly appears from total derivative giving
a boundary contribution in point-splitting regularization.
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η-Function Calculation - Concrete 1/2

2d SMatter with G global symmetry and G gauge theory

ST = −1
4

∫
d2x FµνFµν + SMatter (20)

Ex. Free fermions with vector current Jµ
a = ψ̄γµtaψ.

! Study the interaction I = AµJµ

Add ghosts and auxiliary fields T ↪→ (T̃ ,QBRST)
! BRST transformation of I gives:
δBRST(AµJµ) = (ϵDµc)Jµ + Aµ(iϵgcJµ) = ϵ∂µcJµ (21)

! See I is BRST-closed up to total derivative J = cJ , which can
potentially cause BRST anomaly
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Basic Eta-Function Calculation - Concrete 2/2

The two-bracket receives a contribution from the 2d JJ OPE:

{I, I}(x2) =

∫

|x12|=ϵ
:AJ:(x1) :cJ:(x2)+ :cJ:(x1) :AJ:(x2)

=

∮

S1x2

( :A(x1)c(x2): + :c(x1)A(x2): ) ⟨J (x1)J (x2)⟩

= # :c dA: (x2) . (22)

! We use JJ ∼ |x12|−2, Taylor expanded, and integrated by parts
! # denotes combinatorial and rep-theoretic factors

Recover well-known 1-loop anomaly for G-gauge theory

{AµJµ,AνJ ν} = # cF12 . (23)

! In 2k-dim, you recover anomaly from (k + 1)-ary bracket
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Perturbative Corrections to Q

Callan-Symanzik equation says renormalized correlators are
independent of (arbitrary) renormalization scale µ:

µ
d

dµG(n) =

(
µ
∂

∂µ
+ β + γ

)
G(n) = 0 (24)

Analogue of γ is Q on local operators
! Coefficients Qi(g) of Q define operations Int⊗n ⊗ Op → Op

Q O = {O}+ {I,O}+ 1
2{I, I,O}+ · · · . (25)

Compute “semi-chiral ring” in interacting SQFTs

QBRST acts on fields and generates a vector field η on the space
of theories/perturbative interactions. Q describes the quantum
loop corrected action of BRST symmetry on local operators.
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Midpoint Recap and Generalizations
Recap so far:
! Deformations are integral to our understanding of QFT
! BV-BRST formalism introduces η-function, geometrizes QFT
deformation theory by tracking BRST anomalies

! η defines an L∞-algebra on interactions and Maurer-Cartan
equation is solved by well-defined deformations

! η contains useful information like anomalies and OPEs
! Can compute deformed/interacting Q on local operators

Generalizations:
! Can consider position dependent interactions: causes
momentum-inflow pi at each vertex. L∞-brackets extend to

⊗iIntp(i) → Int∑
i p(i) (26)

! Auxiliary and defect systems: the brackets of T × Tprobe
extract more information about T
Ex. All OPE coefficients of chiral VOA from auxiliary brackets
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Twisted SQFTs



Why Supersymmetry?

SUSY QFTs provide a rich, but tractable, collection of
theories in which quantities are exactly computable or
highly constrained; including phases of gauge theories
! Non-renormalization theorems and dualities

Insights from SUSY QFTs can tell us about the real world
Ex. Super QCD. N = 1 SU (Nc) SYM with Nf fundamentals exhibits

theories with confinement, chiral symmetry breaking,
strongly coupled IR CFTs etc.

Tractability follows from existence of protected quantities
! Can be invariant under deformation of coupling constant
! Computable in different duality frames; probe NP physics
Ex. Superconformal index counts local operators with signs

I = Tr(−1)Fpj1+j2−r/2qj1−j2−r/2e−β{Q−,S+} (27)
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SUSY and the Semi-Chiral Ring

Supersymmetry enhances Poincaré symmetry

{Qα, Q̄β̇} = Pαβ̇ , (28)
{Qα,Qβ} = {Q̄α̇, Q̄β̇} = 0 . (29)

! Work with 4d N = 1 (in Euclidean signature) for simplicity

Pick some supercharge Q = Q−
! The semi-chiral ring of Q consists of all Q-invariant operators

[Q,O] = 0 (30)
! In SUSY vacuum correlators of Q-invariant operators satisfy

⟨(O+[Q,Λ]) · · ·⟩ = ⟨O · · ·⟩+ ⟨[Q,Λ · · · ]⟩ = ⟨O · · ·⟩ (31)

! So don’t care about operators modulo O ∼ O+[Q,Λ].
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From SUSY to the Holomorphic Twist

Given any SQFT, we define the Holomorphic Twist by taking
cohomology of any one nilpotent supercharge, e.g. Q := Q−

Q2 = 0 , Q-Closed: [Q,O] = 0 , Q-Exact: [Q,Λ] , (32)

! Most available & least forgetful twist: only needs N = 1 SUSY.
! Cohomology isolates the semi-chiral ring
! Cohomology classes computed by the holomorphic twist are
the objects counted by the superconformal index.

Anti-holomorphic translations are Q-exact, so twisted theory
is (cohomologically) holomorphic [Johansen], [Nekrasov], [Costello]

{Q, Q̄α̇} = ∂z̄α̇ (33)

! Spin(4)" SU (2)
! We added Q− to QBRST and trivialized anti-holo. translations
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Superfields and Dolbeault Cohomology

4d N = 1 SQFTs are formulated in language of superspace.
We use a chiral superspace, with only θ̄α̇ coordinates
! A superfield is of the form

O[θ̄] = eθ̄α̇Q̄α̇ O(0) = O(0) +O(1) +O(2) (34)

! The right-handed supercharges act by Q̄α̇ = ∂θ̄α̇

Identify θ̄α̇ ↔ dz̄ α̇, superfields are Dolbeault (0, •)-forms
Subsector of original QFT encoding 1/4N -BPS operators and
their SUSY multiplets in holomorphic fields on spacetime
! Twisted stress tensor Sα̇ is a chiral piece of S-multiplet
! (Derivative of) Sα̇ generates remaining SU (2) symmetries
! Partition function is superconformal index
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A 2d CFT Reminder
2d CFTs have infinite dimensional symmetry enhancements
! Every holomorphic local operator is automatically

∂̄-conserved and remains so when multipled by some f (z).
! Gives humongous families of symmetries, e.g. Virasoro

A 2d chiral conformal primary φ has a mode expansion:
φ(z) =

∑

n∈Z
z−n−hφ̂n = z−h

(
· · ·+ z−1φ̂1 + z0φ̂0 + z1φ̂−1 + . . .

)

! To extract the mode φ̂n , complex analysis says that:

φ̂n =

∮ dz
2πi zn+h−1φ(z) (35)

! View this as wedging the (0, 0)-form zhφ(z) with a form:

φ(z) #→ dz
2πi zn−1 ∧ zhφ(z) (36)

2d chiral primaries have a Z of modes “because”
H 1,•(C1 \{0}) ∼= Z (37)
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Modes in the Holomorphic Twist
On C2, chiral superfields O are (0, •)-forms
For any ρ ∈ H 2,•(C2 \{0}) we define

Ôρ =

∮

S3
O∧ρ (38)

! Deg 0 ρ ∼ zn
1 zm

2 d2z gives non-negative modes of operator
! Deg 1 ρ ∼ ∂n

z1∂m
z2ωBM gives negative modes of operator

Infinite dimensional symmetry enhancements analogous to
Virasoro and Kac-Moody [Gwilliam, Williams].
! Deformation" [Beem, Lemos, Liendo, Peelaers, Raselli, van Rees]
! [Bomans, Wu] central extensions of higher Virasoro exist, and
are labelled by conformal anomalies (a and c), obtainable
from (higher!) brackets of holomorphic stress-tensor

Stress: OPE of a subsector of the original physical theory,
not a deformed/modified theory.
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Cohomology and Confinement



Free Cohomology and Adding Interactions

Start with the Free Cohomology V , i.e. free semi-chiral ring
! G-inv. polynomials (words) in fields and derivatives (letters)

One way to think of twisted theory is that we have added
QSUSY to QBRST and trivialized some translations
! Interacting quantum Q is obtained by computing brackets:

QO = {I,O}+ 1
2{I, I,O}+ 1

6{I, I, I,O}+ . . . . (39)
! We thus compute all perturbative corrections to the
semi-chiral ring by computing the (higher) brackets

! Brackets are a generalized Konishi-Anomaly for Q.

Use to systematically construct cohomology of 1
16-BPS

operators in N = 4 SYM [Chang, Lin], [Choi, Kim, Lee, Lee, Park]

Cohomology is not fully-protected like index, but can still
compute corrections systematically; categorifies the index
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Feynman Diagrams

Feynman diagrams are Laman graphs. [Budzik, Gaiotto, JK, Wu, Yu]

! Arbitrary holomorphic-topological twists in arbitrary
dimensions are captured by generalized-Laman graphs
[Kontsevich], [Gaiotto, Moore, Witten]

Arbitrary integral takes the form:

IΓ[λ; z] ≡
∫

R4|Γ0|−4
∂̄

[
∏

e∈Γ1

P(xe0 − xe1 + ze, x̄e0 − x̄e1)

]⎡

⎣
∏

v∈Γ′
0

eλv ·xv d2xv

⎤

⎦ (40)

! Change of variables maps integral to Fourier transform of a
polytope in loop momenta, the operatope.

! Feynman integrals satisfy infinite collection of geometric
quadratic identities; enforcing associativity

! Can bootstrap all Feynman integrals from these identities.
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TwistingN = 1 SYM

N = 1 SYM is SU (N ) gauge theory with an adjoint fermion

L = τ

∫
d2θ trWαW α + c.c. (41)

Twist is identified (in a non-trivial way) with a holomorphic
bc system [Costello], [Elliot, Safronov, Williams], [Saberi, Williams]
! Fields are collected in adjoint bosonic superfield b and
(co)adjoint fermionic superfield c.

The Lagrangian of this theory is

Ltwisted = Tr b
(
∂̄c − 1

2 [c, c]
)
+ τ Tr ∂αc ∂αc . (42)

! Free cohomology
C[b, ∂αb, ∂α∂βb, . . . , ∂αc, ∂α∂βc, . . . ]G (43)

! Derivative of the stress tensor is ∂αSα = ∂αbA∂αcA.
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Holomorphic Confinement

Adding one loop corrections, we find ∂αSα = Q Tr b2

! ∂αSα generates all remaining spacetime symmetries.
! Exactness of ∂αSα means local operators are invariant under
remaining spacetime transformations.

! Theory becomes topological at one loop!

Being topological is compatible with
confinement: if topological in the UV,
then topological in the IR.
! Constrains IR physics: the
holomorphic twist of the IR must
also be topological.

! Holomorphic Confinement
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Final Recap



Recap

Three Takeaways
1. QFTs have higher brackets, defined by the η-function, which
contain OPEs/anomalies/etc.
! η defines L∞ algebra on space of interactions
! η brackets characterize violation of BRST symmetry

2. η-vector is very computable, especially in HT scenarios.
! All graphs are Laman graphs
! Graphs satisfy “operatope” identities, which enforce
associativity (or Q2

BRST = 0) diagram-by-diagram.
3. Holomorphic twist is local QFT of 1

4N -BPS operators
! Twisted theory has infinite dimensional symmetry
enhancements

! Systematic computation of semi-chiral ring + corrections
! Holomorphic confinement of N = 1 SYM
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Selected Historical SUSY References

SUSY Non-Renormalization Theorems
! [Sohnius, West], [Mandelstam], [Grisaru, Rocek, Siegel], [Seiberg], [Argyres,

Plesser, Seiberg]

Phases of gauge theories and SUSY breaking
! Seiberg, Intrilligator, Strassler, Dine, Yu

Supersymmetric dualities
! [Montonen, Olive], Seiberg, Intrilligator, Witten, Argyres

Superconformal index
! [Witten], [Alvarez-Gaume], [Kinney, Maldacena, Minwalla, Suvrat],

[Romelsberger], [Dolan, Osborn]

Twisted SQFTs
! Witten, Johansen, Donaldson



Holomorphic-Topological
Theories



Holomorphic-Topological Theories
“Holomorphic-Topological” means flat spacetime has
structure of CH × RT with coordinates (xC, x̄C, xR)
! Anti-holomorphic translations in CH and translations in RT

are gauge symmetries (QBRST-exact)
! Just like superspace lets us build intrinsically supersymmetry
invariant actions, we can build BV actions with “superfields” Φ
where dxR and dx̄C are treated as “superspace coordinates.”

Interested in theories with action
∫

CH ×RT
[(Φ, dΦ) + I(Φ)] dHxC (44)

! In free theory, BRST closed superfields satisfy descent:

Q O+ dO = 0 (45)

! Interaction I(Φ) is BRST-closed up to total derivative.

Appears in holomorphic-topological twists of SUSY theories.



Holomorphic-Topological Integrals

In such theories, we will be interested in brackets of the form

{O1 λ1 . . . λn−1 On} (46)
! Conjecturally all information of perturbative HT factorization
algebras. See [Wang, Williams] for rigourous discussion.

The Feynman integrals that contribute will take the form:

IΓ(λ; z) =
∫

M|Γ0|−1

[v ̸=v∗∏

v∈Γ0

dVolveλv ·xC
v

]
d
[
∏

e∈Γ1

Pϵ(xe(0) − xe(1) + ze)

]

! Schwinger parameterization recasts integral as Fourier xform
of polytope in space of loop momenta, the operatope.

! Operatope makes UV and IR finiteness of Feynman integrals
manifest.



n-Laman Constraints

Non-vanishing Feynman diagrams are n-Laman graphs
! Global Constraint

n|Γ0| = (n − 1)|Γ1|+ n + 1 (47)

! Local Constraint For subgraphs Γ[S ]

n|Γ[S ]0| ≥ (n − 1)|Γ[S ]1|+ n + 1 (48)

! n = H + T [Kontsevich], [Gaiotto, Moore, Witten], [Wang]



Quadratic Identities

IΓ(λ; z) has a number of symmetries/identities: symmetries
from the graph, and symmetries under shifts of ze.
Feynman integrals (generally diagrams) satisfy infinite
collections of (geometric) quadratic identities:

∑

Laman S
σ(Γ,S)IΓ[S ] (λ+ ∂; z) · IΓ(S) (λ; z) = 0 . (49)

! Identities imply (higher)-associativity of the accompanying
brackets in a diagram-by-diagram way

! Can bootstrap all Feynman integrals from these identities?

Non-Renormalization Theorem
All loop graphs in (H ,T ≥ 2)-theories must vanish.



A Non-Renormalization Theorem



A Non-Renormalization Theorem 1/2

Many interesting scenarios with mixed HT degree.
Ex. (1+1)d holomorphic boundary of a (2+1)d TFT

Useful to “forget” some of the structure of the bulk TFT.

Trade T = 2 top. directions for an H = 1 holo. direction
! Topological superfield Φ splits into two fields in the
holomorphic theory, a (0, ∗)-form and a (1, ∗)-part:

Φ = Φ(0) + Φ(1)dz . (50)
! Topological superfield condition also splits

(Q + dtop)Φ = (Q + dHolo)Φ+ ∂Φ = 0 . (51)
∂Φ term is now interpreted as a BRST anomaly due to the
holomorphic part of the kinetic term
! i.e. all top. theory calculations are replaced by calculations in
identical holo. theory with extra (Φ, ∂Φ) interaction



A Non-Renormalization Theorem 2/2

Consider a calculation in (H ,T ≥ 2)
! Convert to an equivalent calculation in (H + 1,T − 2)-theory

(H ,T ≥ 2)-theory
Γ

" (H + 1,T − 2)-theory
{γ1, γ2, . . . }

(52)

! γi will correspond Γ with edges ei ∈ Γ1 broken into chains of
edges {fi,1, . . . , fi,m} in all possible ways

! Each vertex has “two-point interaction” (Φ, ∂Φ)
! Each γi has |Γ1|+ k edges and |Γ0|+ k vertices for some k ≥ 0.

If γi are non-vanishing, they must be (n − 1)-Laman graphs.
! Putting the two conditions together, Γ must be a tree for
non-vanishing contribution



Infinite Dimensional Symmetry
Cohomology



A 2d CFT Reminder

If φ is a 2d chiral conformal primary with chiral dimension h,
then we can expand

φ(z) =
∑

n∈Z
z−n−hφ̂n = z−h

(
· · ·+ z−1φ̂1 + z0φ̂0 + z1φ̂−1 + . . .

)

If we want to extract the mode φ̂n , we know that

φ̂n =

∮ dz
2πi zn+h−1φ(z) (53)

! Formally, extract n ≥ 0 modes by multiplying by generator zn

for the space of holomorphic functions on C
! Extract n < 0 modes by integrating against Bochner-Martinelli
kernel

φ̂n =
1
n!φ

(n)(0) ∝
∮
∂nωBMφ(z) (54)

where ωBM = 1/z

These are elements of H 1,0(C1\{0}). Note: H 1,1(C1\{0}) = 0



Dolbeault Cohomology of H n,•(Cn \{0})

In other words

φ̂n =

∫

S1
[zhφ(z)dz̄] ∧ ρ , ρ ∼

{
zndz
∂nωBM

∈ H 1,0(C \{0}) . (55)

H 2,•(C2 \{0}) is concentrated in degrees 0 and 1
! Degree 0. Classes are (2,0)-Dolbeault forms with n,m ≥ 0:

ρ ∼ zn
1 zm

2 d2z (56)

! Degree 1. Classes are (2,1)-Dolbeault forms with n,m ≥ 0:

ρ ∼ ∂n
z1∂m

z2ωBM (57)

! The Bochner-Martinelli Kernel is now the thing such that
∫

S3
ωBM f (z) = f (0) (58)

for any holomorphic f (z) on C2.



Modes in the Holomorphic Twist

In C2, we’ve seen that (chiral) superfields O are identifiable
with (0, •)-forms
For any ρ ∈ H 2,•(C2 \{0}) we define

Ôρ =

∮

S3
O ∧ ρ (59)

! Degree 0 classes ρ ∼ zn
1 zm

2 d2z give analogue of non-negative
modes of VOA, Ôn,m = Ôρ

! Degree 1 classes ρ ∼ ∂n
z1∂m

z2ωBM give analogue of negative
modes of VOA Ô−n−1,−m−1 = Ôρ

In general H n,•(Cn \{0}) is ocncentrated in degree 0
(functions) and degree n − 1 (dual functions)



Summary of Symmetries

Supercurrent Scie Tur
Multiplet

SS+,+ Eingative
Yum3

ligera

I define

Symplectomorphisms a
3It turns out

Q(0) = 0 Complex

Corn. by Su
Dicompetesms

=> gaga is semi-chiral i .e Pres daz
(Needs Rsym)

Actually , when cons . R-sym
S is semi-chiral

W L

As it turns out
, Sy" contains the

holomorphic part of physical stress Global su(2) Global u(2)
tensor and generates diffs of subalgebra C

subalgebra

spacetime. (Gen . by holomorphic (Needs R sym
part of Physical

suce) -> use)


